CF618F Double Knapsack 构造、抽屉原理
首先,选取子集的限制太宽了,子集似乎只能枚举,不是很好做。考虑加强限制条件:将“选取子集”的限制变为“选取子序列”的限制。在接下来的讨论中我们将会知道:将限制控制得更紧,问题也一定会有解。
现在我们需要求\(A,B\)的两个子序列,满足两者的和相等。显然可以前缀和,然后就不会做了qwq
考虑下面的算法:假定\(\sum\limits_{a \in A} a < \sum\limits_{b \in B} b\)(如果相等直接全选),设序列\(A\)前缀和为\(sumA_i\),序列\(B\)前缀和为\(sumB_i\)。
对于\(n+1\)个\(sumA_i\),在\(sumB\)中找到最小的大于等于它的元素\(sumB_j\),那么一定有\(sumB_j - sumA_i \in [0,n)\),可能的\(sumB - sumA\)有\(n\)种,但是有\(n+1\)组\(i,j\)。
根据抽屉原理,一定会存在两组\((i_1,j_1)(i_2,j_2)(i_1 > i_2)\)满足\(sumB_{j_1} - sumA_{i_1} = sumB_{j_2} - sumA_{i_2}\),即\(sumB_{j_1} - sumB_{j_2} = sumA_{i_1} - sumA_{i_2}\)。这样我们就找到了一组可行解:在\(A\)中选择\(A_x , x \in (i_2 , i_1]\),在\(B\)中选择\(B_y , y \in (j_2 , j_1]\)。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<ctime>
#include<cctype>
#include<algorithm>
#include<cstring>
#include<iomanip>
#include<queue>
#include<map>
#include<set>
#include<bitset>
#include<vector>
#include<stack>
#include<cmath>
#include<random>
//This code is written by Itst
using namespace std;
inline int read(){
int a = 0;
char c = getchar();
bool f = 0;
while(!isdigit(c) && c != EOF){
if(c == '-')
f = 1;
c = getchar();
}
if(c == EOF)
exit(0);
while(isdigit(c)){
a = a * 10 + c - 48;
c = getchar();
}
return f ? -a : a;
}
#define PII pair < int , int >
#define st first
#define nd second
#define ll long long
const int MAXN = 1e6 + 7;
ll A[MAXN] , B[MAXN];
PII pos[MAXN];
signed main(){
#ifndef ONLINE_JUDGE
freopen("in","r",stdin);
//freopen("out","w",stdout);
#endif
int N = read();
for(int i = 1 ; i <= N ; ++i)
A[i] = A[i - 1] + read();
for(int i = 1 ; i <= N ; ++i)
B[i] = B[i - 1] + read();
bool f = A[N] > B[N];
if(f) swap(A , B);
fill(pos , pos + N + 1 , PII(-1 , -1));
int p = 0;
for(int i = 0 ; i <= N ; ++i){
while(B[p] < A[i]) ++p;
if(pos[B[p] - A[i]] != PII(-1 , -1)){
PII t = pos[B[p] - A[i]];
if(!f){
printf("%d\n" , i - t.first);
for(int j = t.first + 1 ; j <= i ; ++j)
printf("%d " , j);
printf("\n%d\n" , p - t.second);
for(int j = t.second + 1 ; j <= p ; ++j)
printf("%d " , j);
}
else{
printf("%d\n" , p - t.second);
for(int j = t.second + 1 ; j <= p ; ++j)
printf("%d " , j);
printf("\n%d\n" , i - t.first);
for(int j = t.first + 1 ; j <= i ; ++j)
printf("%d " , j);
}
return 0;
}
else pos[B[p] - A[i]] = PII(i , p);
}
puts("-1");
return 0;
}