CF1110E Magic Stones 差分
将原数组差分一下,设\(d_i = c_{i+1} - c_i\)
考虑在\(i\)位置的一次操作会如何影响差分数组
\(d_{i+1}' = c_{i+1} - (c_{i+1} + c_{i-1} - c_i) = c_i - c_{i-1} = d_i\)
\(d_i' = (c_{i+1} + c_{i-1} - c_i) - c_{i-1} = c_{i+1} - c_i = d_{i+1}\)
所以本质上一次操作交换了差分数组中的两个元素
所以只需要判断差分数组中的每一个元素能否对应即可。注意还需要判断\(c_1=t_1\)
#include<bits/stdc++.h>
using namespace std;
inline int read(){
int a = 0;
char c = getchar();
bool f = 0;
while(!isdigit(c)){
if(c == '-')
f = 1;
c = getchar();
}
while(isdigit(c)){
a = (a << 3) + (a << 1) + (c ^ '0');
c = getchar();
}
return f ? -a : a;
}
const int MAXN = 1e5 + 7;
int c[MAXN] , t[MAXN] , N;
int main(){
N = read();
for(int i = 1 ; i <= N ; ++i)
c[i] = read();
for(int i = 1 ; i <= N ; ++i)
t[i] = read();
if(c[1] != t[1]){
puts("No");
return 0;
}
for(int i = 1 ; i < N ; ++i){
c[i] = c[i + 1] - c[i];
t[i] = t[i + 1] - t[i];
}
sort(c + 1 , c + N);
sort(t + 1 , t + N);
for(int i = 1 ; i < N ; ++i)
if(c[i] != t[i]){
puts("No");
return 0;
}
puts("Yes");
return 0;
}