题解 CF914G 【Sum the Fibonacci】
经典板子题?
令 \(i = s_a\&s_b, j = s_c, k = s_d \oplus s_e\)
\(\sum_{p}\sum_{i\&j\&k = 2^p} f_i \times f_j \times f_k \times (\sum_{s_a|s_b = i, s_a \&s_b = 0}1) \times (\sum_{s_c = j}1)\times (\sum_{s_d \oplus s_e = k}1)\)
令 \(A_i = (\sum_{s_a|s_b = i, s_a \&s_b = 0}1)\)。
\(B_j = (\sum_{s_c = j}1)\)。
\(C_k = (\sum_{s_d \oplus s_e = k}1)\)。
\(A_i\) 可以通过子集卷积来做,复杂度 \(N \log^2 N\)。
\(B_j\) 显然。
\(C_k\) 可以直接 FWTXOR 来做,复杂度 \(N \log N\)。
最后 FWTAND 卷一下三个就行了。
#include <bits/stdc++.h>
const int BL = 2 << 20;
struct streambufcin {
std::streambuf *in;
streambufcin() {
std::ios::sync_with_stdio(false);
std::cin.tie(NULL);
in = std::cin.rdbuf();
bg = ed = NULL;
#ifdef LOCAL
freopen("in.in", "r", stdin);
#endif
}
char buf[BL], *bg, *ed, ch;
char gc() { return bg == ed ? ed = buf + in -> sgetn(bg = buf, BL), (bg == ed ? -1 : *bg++) : *bg++; }
template<class T>
streambufcin &operator >> (T &x) {
bool neg = false;
for (ch = gc(); !isdigit(ch); ch = gc());
if (ch == '-')
neg = true;
for (x = 0; isdigit(ch); ch = gc())
x = x * 10 + ch - 48;
if (neg)
x = -x;
return *this;
}
streambufcin &operator >> (char &c) {
for (c = gc(); isspace(c); c = gc());
return *this;
}
} cin;
struct streambufcout {
std::streambuf *out = std::cout.rdbuf();
char buf[BL], *optr = buf;
streambufcout() { out = std::cout.rdbuf(); }
~streambufcout() { flush(); }
void flush() { out -> sputn(buf, optr - buf); optr = buf; }
void pc(char c) {
if (optr == buf + BL)
flush();
*optr++ = c;
}
template<class T>
streambufcout &operator << (T x) {
static int st[233], top;
if (x < 0) {
x = -x;
pc('-');
}
do {
st[++top] = x % 10;
x /= 10;
} while (x);
while (top)
pc(st[top--] ^ 48);
return *this;
}
streambufcout &operator << (char c) { pc(c); return *this; }
} cout;
int n;
const int N = 262144;
const int mod = 1e9 + 7;
const int inv2 = mod + 1 >> 1;
int s[N], fib[N], cnt[N];
int A[N], B[N], C[N], F[19][N], h[N], answer[N];
int add(int x, int y) {
if (x + y >= mod)
return x + y - mod;
else
return x + y;
}
int dec(int x, int y) {
if (x - y < 0)
return x - y + mod;
else
return x - y;
}
void mul(int &x, int y) { x = 1ll * x * y % mod; }
void _ad(int &x, int y) { x += y; if (x >= mod) x -= mod; }
void _de(int &x, int y) { x -= y; if (x < 0) x += mod; }
void FWTOR(int *f, int inv) {
for (int len = 1; len < N; len <<= 1) {
for (int i = 0; i < N; i += len << 1) {
for (int j = 0; j < len; j++) {
if (inv > 0)
_ad(f[i + j + len], f[i + j]);
else
_de(f[i + j + len], f[i + j]);
}
}
}
}
void FWTAND(int *f, int inv) {
for (int len = 1; len < N; len <<= 1) {
for (int i = 0; i < N; i += len << 1) {
for (int j = 0; j < len; j++) {
if (inv > 0)
_ad(f[i + j], f[i + j + len]);
else
_de(f[i + j], f[i + j + len]);
}
}
}
}
void FWTXOR(int *f, int inv) {
for (int len = 1; len < N; len <<= 1) {
for (int i = 0; i < N; i += len << 1) {
for (int j = 0; j < len; j++) {
int x = f[i + j], y = f[i + j + len];
f[i + j] = add(x, y), f[i + j + len] = dec(x, y);
if (inv < 0)
mul(f[i + j], inv2), mul(f[i + j + len], inv2);
}
}
}
}
int main() {
for (int i = 1; i < 262144; i++)
cnt[i] = cnt[i >> 1] + (i & 1);
fib[0] = 0; fib[1] = 1;
for (int i = 2; i < 262144; i++)
fib[i] = add(fib[i - 1], fib[i - 2]);
cin >> n;
for (int i = 1; i <= n; i++) { int x; cin >> x; A[x]++; B[x]++; C[x]++; }
for (int i = 0; i < 262144; i++)
F[cnt[i]][i] = A[i], A[i] = 0;
for (int i = 0; i < 19; i++)
FWTOR(F[i], 1);
for (int i = 0; i < 19; i++) {
for (int j = 0; j < 262144; j++)
h[j] = 0;
for (int j = 0; j <= i; j++)
for (int k = 0; k < 262144; k++)
_ad(h[k], 1ll * F[j][k] * F[i - j][k] % mod);
FWTOR(h, -1);
for (int j = 0; j < 262144; j++)
if (cnt[j] == i)
_ad(A[j], h[j]);
}
FWTXOR(C, 1);
for (int i = 0; i < 262144; i++)
mul(C[i], C[i]);
FWTXOR(C, -1);
for (int i = 0; i < 262144; i++)
mul(A[i], fib[i]), mul(B[i], fib[i]), mul(C[i], fib[i]);
FWTAND(A, 1), FWTAND(B, 1), FWTAND(C, 1);
for (int i = 0; i < 262144; i++)
answer[i] = 1ll * A[i] * B[i] % mod * C[i] % mod;
FWTAND(answer, -1);
int Answer = 0;
for (int i = 1; i < 262144; i <<= 1)
_ad(Answer, answer[i]);
cout << Answer << '\n';
return 0;
}