【模板】拉格朗日插值
拉格朗日插值的公式大概是
\(f(k) = \sum_{i=0}^{n}y_i \prod_{j!=i} \frac{k-x_j}{x_i-x_j}\)
\(x_i,y_i\) 是在 \(x_i\) 的取值。
#include <bits/stdc++.h>
#define int long long
using namespace std;
struct io {
char buf[1 << 26 | 3], *s; int f;
io() { f = 0, buf[fread(s = buf, 1, 1 << 26, stdin)] = '\n'; }
io& operator >> (int&x) {
for(x = f = 0; !isdigit(*s); ++s) f |= *s == '-';
while(isdigit(*s)) x = x * 10 + (*s++ ^ 48);
return x = f ? -x : x, *this;
}
};
const int mod = 998244353;
int qpow(int x, int y) {
int res = 1;
for(; y; y >>= 1, x = x * x % mod)
if(y & 1) res = res * x % mod;
return res;
}
int inv(int x) { return qpow(x, mod - 2); }
int n, k;
const int maxn = 2e3 + 32;
int x[maxn], y[maxn];
#define out cout
signed main() {
#ifdef LOCAL
#define in cin
ios :: sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr);
freopen("testdata.in", "r", stdin);
#else
io in;
#endif
in >> n >> k;
for(int i = 1 ; i <= n ; i ++) in >> x[i] >> y[i];
int ans = 0;
for(int i = 1 ; i <= n ; i ++) {
int a, b; a = b = 1;
for(int j = 1 ; j <= n ; j ++) if(i ^ j) { a = a * (k - x[j]) % mod; }
for(int j = 1 ; j <= n ; j ++) if(i ^ j) { b = b * (x[i] - x[j]) % mod; }
a = (a + mod) % mod, b = (b + mod) % mod, b = inv(b);
ans = (ans + a * b % mod * y[i] % mod) % mod;
}
out << ans << '\n';
return 0;
}