P2612 [ZJOI2012]波浪 [dp]

不会\(dp\)……

我们发现绝对值的问题不太好搞,所以我们按顺序插入就可以了。
我们设一个状态 \(dp_{i,j,k,l}\) 为 插入前 \(i\) 个数,已经构成 \(j\) 个连通块,\(k\) 的贡献,\(l\) 表示\(1\)\(n\)的边界问题 的方案数。

那么答案显而易见是 \(\frac{\sum_{k=m}^{limit}\ dp_{n,1,k,2}}{n!}\)
由于你放到一些位置,贡献是负数,所以就直接在 \(k\) 那一维整体\(+4500\)就好了。

然后就是喜闻乐见的分类讨论环节了。

  • 两边都不和连通块相连,产生 \(-2\times i\) 的贡献,方案数为 \(j - l + 1\)
  • 一边和连通块,另一边不和连通块相连,那么产生 \(0\) 的贡献,方案数 \(j - 1\),条件 \(j \geq 2\)
  • 两边都和连通块相连,产生 \(2 \times i\) 的贡献,方案数是 \(j - 1\),条件 \(j \geq 2\)
  • 一边不和连通块相连,一边和边界相连,会产生 \(-i\) 的贡献,方案数是 \(2-l\),条件是 \(l \geq 2\)
  • 一边和连通块相连,一边和边界相连,产生 \(i\) 的贡献,方案数是 \(2-l\),条件还是 \(l \geq 2\)

滚动一下就好了。

// powered by c++11
// by Isaunoya
#include <bits/stdc++.h>

#define rep(i, x, y) for (register int i = (x); i <= (y); ++i)
#define Rep(i, x, y) for (register int i = (x); i >= (y); --i)

using namespace std;
using db = double;
using ll = long long;
using uint = unsigned int;
using ull = unsigned long long;

using pii = pair<int, int>;

#define fir first
#define sec second

template <class T>

void cmax(T& x, const T& y) {
  if (x < y) x = y;
}

template <class T>

void cmin(T& x, const T& y) {
  if (x > y) x = y;
}

#define all(v) v.begin(), v.end()
#define sz(v) ((int)v.size())
#define pb emplace_back

template <class T>

void sort(vector<T>& v) {
  sort(all(v));
}

template <class T>

void reverse(vector<T>& v) {
  reverse(all(v));
}

template <class T>

void unique(vector<T>& v) {
  sort(all(v)), v.erase(unique(all(v)), v.end());
}

void reverse(string& s) { reverse(s.begin(), s.end()); }

const int io_size = 1 << 23 | 233;
const int io_limit = 1 << 22;
struct io_in {
  char ch;
#ifndef __WIN64
  char getchar() {
    static char buf[io_size], *p1 = buf, *p2 = buf;

    return (p1 == p2) && (p2 = (p1 = buf) + fread(buf, 1, io_size, stdin), p1 == p2) ? EOF : *p1++;
  }
#endif
  io_in& operator>>(char& c) {
    for (c = getchar(); isspace(c); c = getchar());

    return *this;
  }
  io_in& operator>>(string& s) {
    for (s.clear(); isspace(ch = getchar());)
      ;

    if (!~ch) return *this;

    for (s = ch; !isspace(ch = getchar()) && ~ch; s += ch)
      ;

    return *this;
  }

  io_in& operator>>(char* str) {
    char* cur = str;
    while (*cur) *cur++ = 0;

    for (cur = str; isspace(ch = getchar());)
      ;
    if (!~ch) return *this;

    for (*cur = ch; !isspace(ch = getchar()) && ~ch; *++cur = ch)
      ;

    return *++cur = 0, *this;
  }

  template <class T>

  void read(T& x) {
    bool f = 0;
    while ((ch = getchar()) < 48 && ~ch) f ^= (ch == 45);

    x = ~ch ? (ch ^ 48) : 0;
    while ((ch = getchar()) > 47) x = x * 10 + (ch ^ 48);
    x = f ? -x : x;
  }

  io_in& operator>>(int& x) { return read(x), *this; }

  io_in& operator>>(ll& x) { return read(x), *this; }

  io_in& operator>>(uint& x) { return read(x), *this; }

  io_in& operator>>(ull& x) { return read(x), *this; }

  io_in& operator>>(db& x) {
    read(x);
    bool f = x < 0;
    x = f ? -x : x;
    if (ch ^ '.') return *this;

    double d = 0.1;
    while ((ch = getchar()) > 47) x += d * (ch ^ 48), d *= .1;
    return x = f ? -x : x, *this;
  }
} in;

struct io_out {
  char buf[io_size], *s = buf;
  int pw[233], st[233];

  io_out() {
    set(7);
    rep(i, pw[0] = 1, 9) pw[i] = pw[i - 1] * 10;
  }

  ~io_out() { flush(); }

  void io_chk() {
    if (s - buf > io_limit) flush();
  }

  void flush() { fwrite(buf, 1, s - buf, stdout), fflush(stdout), s = buf; }

  io_out& operator<<(char c) { return *s++ = c, *this; }

  io_out& operator<<(string str) {
    for (char c : str) *s++ = c;
    return io_chk(), *this;
  }

  io_out& operator<<(char* str) {
    char* cur = str;
    while (*cur) *s++ = *cur++;
    return io_chk(), *this;
  }

  template <class T>

  void write(T x) {
    if (x < 0) *s++ = '-', x = -x;

    do {
      st[++st[0]] = x % 10, x /= 10;
    } while (x);

    while (st[0]) *s++ = st[st[0]--] ^ 48;
  }

  io_out& operator<<(int x) { return write(x), io_chk(), *this; }

  io_out& operator<<(ll x) { return write(x), io_chk(), *this; }

  io_out& operator<<(uint x) { return write(x), io_chk(), *this; }

  io_out& operator<<(ull x) { return write(x), io_chk(), *this; }

  int len, lft, rig;

  void set(int _length) { len = _length; }

  io_out& operator<<(db x) {
    bool f = x < 0;
    x = f ? -x : x, lft = x, rig = 1. * (x - lft) * pw[len];
    return write(f ? -lft : lft), *s++ = '.', write(rig), io_chk(), *this;
  }
} out;

template <int sz, int mod>

struct math_t {
	math_t() {
    fac.resize(sz + 1), ifac.resize(sz + 1);
    rep(i, fac[0] = 1, sz) fac[i] = fac[i - 1] * i % mod;

    ifac[sz] = inv(fac[sz]);
    Rep(i, sz - 1, 0) ifac[i] = ifac[i + 1] * (i + 1) % mod;
  }

  vector<int> fac, ifac;

  int qpow(int x, int y) {
    int ans = 1;
    for (; y; y >>= 1, x = x * x % mod)
      if (y & 1) ans = ans * x % mod;
    return ans;
  }

  int inv(int x) { return qpow(x, mod - 2); }

  int C(int n, int m) {
    if (n < 0 || m < 0 || n < m) return 0;
    return fac[n] * ifac[m] % mod * ifac[n - m] % mod;
  }
};

int gcd(int x, int y) { return !y ? x : gcd(y, x % y); }
int lcm(int x, int y) { return x * y / gcd(x, y); }

int n , m , k;

namespace A {
	double f[2][101][9001][3];
}

namespace B {
	__float128 f[2][101][9001][3];
}

template < class T > 

void print(T x) {
	out << "0." ;
	x *= 10;
	rep(i , 1 , k - 1) {
		out << (int)x ;
		x = (x - (int)x) * 10;
	}
	out << (int)(x + 0.5) << '\n';
}

template < class T > 

void solve(T f[][101][9001][3]) {
	f[0][0][0 + 4500][0] = 1;
	
	rep(i , 1 , n) {
		int p = i & 1, o = p ^ 1;
		memset(f[p], 0, sizeof(f[p]));
		rep(j , 0 , min(i - 1 , m)) {
			rep(k , 0 , 9000) {
				rep(l , 0 , 2) {
					T t = f[o][j][k][l];
					if(! t) continue;
					if(k >= 2 * i) {
						f[p][j + 1][k - 2 * i][l] += t * (j - l + 1);
					}
					if(j > 0) {
						f[p][j][k][l] += t * (j * 2 - l);
					}
					if(j >= 2 && k + 2 * i <= 9000) {
						f[p][j - 1][k + 2 * i][l] += t * (j - 1);
					}
					if(l ^ 2 && k >= i) {
						f[p][j + 1][k - i][l + 1] += t * (2 - l);
					}
					if(l ^ 2 && j && k + i <= 9000) {
						f[p][j][k + i][l + 1] += t * (2 - l);
					}
				}
			}
		}
	}
	
	T ans = 0;
	rep(i , m + 4500 , 9000)
		ans += f[n & 1][1][i][2];
	rep(i , 1 , n) ans /= i;
	
	print(ans);
}

signed main() {
  // code begin.
	in >> n >> m >> k;
	if(k <= 8)
		solve(A :: f);
	else 
		solve(B :: f);
  return 0;
  // code end.
}
posted @ 2020-03-29 11:15  _Isaunoya  阅读(140)  评论(0编辑  收藏  举报