P4770 [NOI2018]你的名字 [后缀自动机,线段树合并]
对长串做个后缀自动机上线段树合并,然后你对每个短串搞个SAM在长串后缀自动机上跑。
答案就是 \(\sum \max(0, len_i - max(len_fa_i, endmax_{pos_i}))\)
\(pos_i\) 指的是 \(i\) 节点对应原字符串的位置。
// clang-format off
// powered by c++11
// by Isaunoya
#include<bits/stdc++.h>
#define rep(i,x,y) for(register int i=(x);i<=(y);++i)
#define Rep(i,x,y) for(register int i=(x);i>=(y);--i)
using namespace std;
using db=double;
using ll=long long;
using uint=unsigned int;
using ull=unsigned long long;
using pii=pair<int,int>;
#define Tp template
#define fir first
#define sec second
Tp<class T>void cmax(T&x,const T&y) {
if(x<y)x=y;
}
Tp<class T>void cmin(T&x,const T&y) {
if(x>y)x=y;
}
#define all(v) v.begin(),v.end()
#define sz(v) ((int)v.size())
#define pb emplace_back
Tp<class T>void sort(vector<T>&v) {
sort(all(v));
}
Tp<class T>void reverse(vector<T>&v) {
reverse(all(v));
}
Tp<class T>void unique(vector<T>&v) {
sort(all(v)),v.erase(unique(all(v)),v.end());
}
inline void reverse(string&s) {
reverse(s.begin(),s.end());
}
const int SZ=1<<23|233;
struct FILEIN {
char qwq[SZ],*S=qwq,*T=qwq,ch;
#ifdef __WIN64
#define GETC getchar
#else
inline char GETC() {
return(S==T)&&(T=(S=qwq)+fread(qwq,1,SZ,stdin),S==T)?EOF:*S++;
}
#endif
inline FILEIN&operator>>(char&c) {
while(isspace(c=GETC()));
return*this;
} inline FILEIN&operator>>(string&s) {
s.clear();
while(isspace(ch=GETC()));
if(!~ch)return*this;
s=ch;
while(!isspace(ch=GETC())&&~ch)s+=ch;
return*this;
}
inline FILEIN&operator>>(char*str) {
char*cur=str;
while(*cur)*cur++=0;
cur=str;
while(isspace(ch=GETC()));
if(!~ch)return*this;
*cur=ch;
while(!isspace(ch=GETC())&&~ch)*++cur=ch;
*++cur=0;
return*this;
}
Tp<class T>inline void read(T&x) {
bool f=0;
while((ch=GETC())<48&&~ch)f^=(ch==45);
x=~ch?(ch^48):0;
while((ch=GETC())>47)x=x*10+(ch^48);
x=f?-x:x;
}
inline FILEIN&operator>>(int&x) {
return read(x),*this;
} inline FILEIN&operator>>(ll&x) {
return read(x),*this;
} inline FILEIN&operator>>(uint&x) {
return read(x),*this;
} inline FILEIN&operator>>(ull&x) {
return read(x),*this;
}
inline FILEIN&operator>>(double&x) {
read(x);
bool f=x<0;
x=f?-x:x;
if(ch^'.')return*this;
double d=0.1;
while((ch=GETC())>47)x+=d*(ch^48),d*=.1;
return x=f?-x:x,*this;
}
} in;
struct FILEOUT {
const static int LIMIT=1<<22;
char quq[SZ],ST[233];
int sz,O,pw[233];
FILEOUT() {
set(7);
rep(i,pw[0]=1,9)pw[i]=pw[i-1]*10;
}~FILEOUT() {
flush();
}
inline void flush() {
fwrite(quq,1,O,stdout),fflush(stdout),O=0;
}
inline FILEOUT&operator<<(char c) {
return quq[O++]=c,*this;
} inline FILEOUT&operator<<(string str) {
if(O>LIMIT)flush();
for(char c:str)quq[O++]=c;
return*this;
}
inline FILEOUT&operator<<(char*str) {
if(O>LIMIT)flush();
char*cur=str;
while(*cur)quq[O++]=(*cur++);
return*this;
}
Tp<class T>void write(T x) {
if(O>LIMIT)flush();
if(x<0) {
quq[O++]=45;
x=-x;
}
do {
ST[++sz]=x%10^48;
x/=10;
} while(x);
while(sz)quq[O++]=ST[sz--];
}
inline FILEOUT&operator<<(int x) {
return write(x),*this;
} inline FILEOUT&operator<<(ll x) {
return write(x),*this;
} inline FILEOUT&operator<<(uint x) {
return write(x),*this;
} inline FILEOUT&operator<<(ull x) {
return write(x),*this;
}
int len,lft,rig;
void set(int l) {
len=l;
} inline FILEOUT&operator<<(double x) {
bool f=x<0;
x=f?-x:x,lft=x,rig=1.*(x-lft)*pw[len];
return write(f?-lft:lft),quq[O++]='.',write(rig),*this;
}
} out;
#define int long long
struct Math {
vector<int>fac,inv;
int mod;
void set(int n,int Mod) {
fac.resize(n+1),inv.resize(n+1),mod=Mod;
rep(i,fac[0]=1,n)fac[i]=fac[i-1]*i%mod;
inv[n]=qpow(fac[n],mod-2);
Rep(i,n-1,0)inv[i]=inv[i+1]*(i+1)%mod;
}
int qpow(int x,int y) {
int ans=1;
for(; y; y>>=1,x=x*x%mod)if(y&1)ans=ans*x%mod;
return ans;
} int C(int n,int m) {
if(n<0||m<0||n<m)return 0;
return fac[n]*inv[m]%mod*inv[n-m]%mod;
}
int gcd(int x,int y) {
return!y?x:gcd(y,x%y);
} int lcm(int x,int y) {
return x*y/gcd(x,y);
}
} math;
// clang-format on
const int maxn = 1e6 + 61;
char s[maxn], t[maxn];
int q, n, m;
int rt[maxn];
struct SegMentTree {
int ls[maxn << 5], rs[maxn << 5], cnt;
SegMentTree() { cnt = 0; }
void upd(int& p, int l, int r, int x) {
if (!p) p = ++cnt;
if (l == r) return;
int mid = l + r >> 1;
if (x <= mid)
upd(ls[p], l, mid, x);
else
upd(rs[p], mid + 1, r, x);
}
int merge(int x, int y) {
if (!x || !y) return x | y;
int p = ++cnt;
ls[p] = merge(ls[x], ls[y]);
rs[p] = merge(rs[x], rs[y]);
return p;
}
int qry(int p, int a, int b, int l, int r) {
if (!p) return 0;
if (a <= l && r <= b) return 1;
int mid = l + r >> 1;
if (a <= mid && qry(ls[p], a, b, l, mid)) return 1;
if (b > mid && qry(rs[p], a, b, mid + 1, r)) return 1;
return 0;
}
} smt;
struct Suffix_Auto_Maton {
int las, cnt;
int ch[maxn][26], fa[maxn], len[maxn], pos[maxn];
Suffix_Auto_Maton() { las = cnt = 1; }
void clear() {
rep(i, 1, cnt) {
fa[i] = len[i] = pos[i] = 0;
memset(ch[i], 0, sizeof(ch[i]));
}
las = cnt = 1;
}
void ins(int c, int id) {
int p = las, np = las = ++cnt;
len[np] = len[p] + 1, pos[np] = id;
for (; p && !ch[p][c]; p = fa[p]) ch[p][c] = np;
if (!p) {
fa[np] = 1;
} else {
int q = ch[p][c];
if (len[q] == len[p] + 1) {
fa[np] = q;
} else {
int nq = ++cnt;
pos[nq] = pos[q];
memcpy(ch[nq], ch[q], sizeof(ch[q]));
len[nq] = len[p] + 1, fa[nq] = fa[q], fa[q] = fa[np] = nq;
for (; p && ch[p][c] == q; p = fa[p]) ch[p][c] = nq;
}
}
}
} sam, sam2;
vector<int> g[maxn];
void dfs(int u) {
for (int v : g[u]) {
dfs(v);
rt[u] = smt.merge(rt[u], rt[v]);
}
}
int match[maxn];
void getmatch(int l, int r) {
int now = 1, nowl = 0;
rep(i, 1, m) {
while (233) {
if (sam.ch[now][s[i] - 'a'] && smt.qry(rt[sam.ch[now][s[i] - 'a']], l + nowl, r, 1, n)) {
now = sam.ch[now][s[i] - 'a'], nowl++;
break;
}
if (!nowl) break;
if (--nowl == sam.len[sam.fa[now]]) now = sam.fa[now];
}
match[i] = nowl;
}
}
signed main() {
// code begin.
scanf("%s", s + 1), n = strlen(s + 1), sam.clear();
rep(i, 1, n)
sam.ins(s[i] - 'a', i), smt.upd(rt[sam.las], 1, n, i);
rep(i, 2, sam.cnt)
g[sam.fa[i]].pb(i);
dfs(1);
int _;
scanf("%lld", &_);
while (_--) {
scanf("%s", s + 1);
m = strlen(s + 1);
int l, r;
scanf("%lld%lld", &l, &r);
sam2.clear();
rep(i, 1, m)
sam2.ins(s[i] - 'a', i);
getmatch(l, r);
int ans = 0;
rep(i, 2, sam2.cnt)
ans += max(0ll, sam2.len[i] - max(match[sam2.pos[i]], sam2.len[sam2.fa[i]]));
printf("%lld\n", ans);
}
return 0;
// code end.
}