KD-Tree 学习笔记

这是一篇又长又烂的学习笔记,请做好及时退出的准备。

KD-Tree 的复杂度大概是 \(O(n^{1-\frac{1}{k}})\)
\(k\) 是维度
由于网上找不到靠谱的证明,咕了。
会证明之后再补上。

前置?

  • 考虑到平衡树不能做多维,kdt就是扩展到多维情况
  • 每次 \(nth\_element\) 的复杂度是 \(O(n)\) 的。
  • 类似替罪羊的想法,如果树不够平衡,直接 pia 重构
  • 考虑你删除元素不方便,据说只能打上标记啥的)
  • 但是你插入元素不改变树的大致结构 qwqwq

建树显然是 \(n \log n\)
插入据说是 \(n \log^2 n\)
查询依旧是 \(n \log n\) 的 qwq

  • 考虑建树


假设最开始有这么多个点

选一个中位数,把空间一分为二
左边作为左儿子,右边作为右儿子

再取一次

我们定义初始是这样

类似平衡树的结构

建出来的树长成这样子

然后像平衡树一样维护最小横坐标,纵坐标,最大横坐标,纵坐标,当前权值,当前坐标,sum值,就可以了。

代码亦不难

int build(int l , int r , int p) {
	now = p ;
	int mid = l + r >> 1 ;
	nth_element(data + l , data + mid , data + r + 1) ; // data 是原数组 qwq 是 KDT
	qwq[mid] = data[mid] ;
	if(l < mid) qwq[mid].ls = build(l , mid - 1 , p ^ 1) ;
	if(r > mid) qwq[mid].rs = build(mid + 1 , r , p ^ 1) ;
	pushup(mid) ; return mid ;
}
  • 考虑修改

插入时要判是否平衡,如果不平衡就擦除一整棵子树并重构。(类似替罪羊树的想法

void Erase(int x) {
  if (!x) return;
  pp[++m] = P[x], Erase(ls(x)), Erase(rs(x)), erase(x);
}
inline void insert(Point p) {
  int top = -1, x = root;
  if (!x) {
    pp[1] = p, root = build(1, 1, 1);
    return;
  }
  while (233) {
    if (max(sz[ls(x)], sz[rs(x)]) > sz[x] * alpha && top == -1) top = x;
    ++sz[x], cmin(L[x][0], p.x), cmax(R[x][0], p.x), cmin(L[x][1], p.y), cmax(R[x][1], p.y);
    int& y = ch[x][(tp[x] == 0) ? (!cmpx(p, P[x])) : (!cmpy(p, P[x]))];
    if (!y) {
      y = NewNode();
      L[y][0] = R[y][0] = p.x, L[y][1] = R[y][1] = p.y, sz[y] = 1, tp[y] = tp[x] ^ 1, fa[y] = x, P[y] = p;
      break;
    }
    x = y;
  }
  if (top == -1) return;
  m = 0;
  if (top == root) {
    Erase(top), root = build(1, m, 1);
    return;
  }
  int f = fa[top], &t = ch[f][(tp[f] == 0) ? (!cmpx(P[top], P[f])) : (!cmpy(P[top], P[f]))];
  Erase(top), t = build(1, m, tp[f]);
}

这样就可以了

询问其实因题目而定的。。没什么具体做法

int query(int x, int l0, int r0, int l1, int r1) {
  if (!x) return 0;
  if (l0 <= L[x][0] && R[x][0] <= r0 && l1 <= L[x][1] && R[x][1] <= r1) return sz[x];
  if (r0 < L[x][0] || R[x][0] < l0 || r1 < L[x][1] || R[x][1] < l1) return 0;
  return query(ls(x), l0, r0, l1, r1) + query(rs(x), l0, r0, l1, r1) +
         (l0 <= P[x].x && P[x].x <= r0 && l1 <= P[x].y && P[x].y <= r1);
}

比如这个就是二维数点查询个数的方法

然后考虑一个东西,即维数问题
\(cdq\)分治,你可以直接三维 \(kdt\) 直接狂 T 不止
也可以排个序然后卡卡常数过去啥的)

三维偏序

#include <bits/stdc++.h>
#define rep(i, x, y) for (register int i = x; i <= y; i++)
using namespace std;
using ll = long long;
using pii = pair<int, int>;
const static int _ = 1 << 20;
char fin[_], *p1 = fin, *p2 = fin;
inline char gc() { return (p1 == p2) && (p2 = (p1 = fin) + fread(fin, 1, _, stdin), p1 == p2) ? EOF : *p1++; }
inline int read() {
  bool sign = 1;
  char c = 0;
  while (c < 48) ((c = gc()) == 45) && (sign = 0);
  int x = (c & 15);
  while ((c = gc()) > 47) x = (x << 1) + (x << 3) + (c & 15);
  return sign ? x : -x;
}
template <class T>
void print(T x, char c = '\n') {
  (x == 0) && (putchar(48)), (x < 0) && (putchar(45), x = -x);
  static char _st[100];
  int _stp = 0;
  while (x) _st[++_stp] = x % 10 ^ 48, x /= 10;
  while (_stp) putchar(_st[_stp--]);
  putchar(c);
}
template <class T>
void cmax(T& x, T y) {
  (x < y) && (x = y);
}
template <class T>
void cmin(T& x, T y) {
  (x > y) && (x = y);
}

const double alpha = 0.7;
const int N = 1e5 + 10;
int n, k;
int ch[N][2], fa[N], sz[N], tp[N];
int L[N][2], R[N][2];
int st[N], top = 0;
#define ls(x) ch[x][0]
#define rs(x) ch[x][1]
struct Point {
  int x, y, z, id;
  bool operator==(const Point& other) const { return x == other.x && y == other.y && z == other.z; }
} p[N], P[N], pp[N];
inline bool cmpx(const Point& x, const Point& y) {
  return (x.x == y.x) ? (x.y == y.y ? x.id < y.id : x.y < y.y) : x.x < y.x;
}
inline bool cmpy(const Point& x, const Point& y) {
  return (x.y == y.y) ? (x.x == y.x ? x.id < y.id : x.x < y.x) : x.y < y.y;
}
int root = 0, cnt = 0;
inline void erase(int x) {
  st[++top] = x, ls(x) = rs(x) = sz[x] = L[x][0] = R[x][0] = L[x][1] = R[x][1] = 0;
  P[x] = { 0, 0, 0, 0 };
}
int m;
inline int NewNode() { return top ? st[top--] : ++cnt; }
int build(int l, int r, int lst) {
  if (l > r) return 0;
  int x = NewNode(), mn = 1e9, mx = -1e9;
  rep(i, l, r) cmin(mn, pp[i].x), cmax(mx, pp[i].x);
  L[x][0] = mn, R[x][0] = mx;
  mn = 1e9, mx = -1e9;
  rep(i, l, r) cmin(mn, pp[i].y), cmax(mx, pp[i].y);
  L[x][1] = mn, R[x][1] = mx, tp[x] = lst ^ 1;
  int mid = l + r >> 1;
  (lst) ? nth_element(pp + l, pp + mid, pp + r + 1, cmpx) : nth_element(pp + l, pp + mid, pp + r + 1, cmpy);
  P[x] = pp[mid], ls(x) = build(l, mid - 1, lst ^ 1), rs(x) = build(mid + 1, r, lst ^ 1);
  if (ls(x)) fa[ls(x)] = x;
  if (rs(x)) fa[rs(x)] = x;
  sz[x] = sz[ls(x)] + sz[rs(x)] + 1;
  return x;
}
void Erase(int x) {
  if (!x) return;
  pp[++m] = P[x], Erase(ls(x)), Erase(rs(x)), erase(x);
}
inline void insert(Point p) {
  int top = -1, x = root;
  if (!x) {
    pp[1] = p, root = build(1, 1, 1);
    return;
  }
  while (233) {
    if (max(sz[ls(x)], sz[rs(x)]) > sz[x] * alpha && top == -1) top = x;
    ++sz[x], cmin(L[x][0], p.x), cmax(R[x][0], p.x), cmin(L[x][1], p.y), cmax(R[x][1], p.y);
    int& y = ch[x][(tp[x] == 0) ? (!cmpx(p, P[x])) : (!cmpy(p, P[x]))];
    if (!y) {
      y = NewNode();
      L[y][0] = R[y][0] = p.x, L[y][1] = R[y][1] = p.y, sz[y] = 1, tp[y] = tp[x] ^ 1, fa[y] = x, P[y] = p;
      break;
    }
    x = y;
  }
  if (top == -1) return;
  m = 0;
  if (top == root) {
    Erase(top), root = build(1, m, 1);
    return;
  }
  int f = fa[top], &t = ch[f][(tp[f] == 0) ? (!cmpx(P[top], P[f])) : (!cmpy(P[top], P[f]))];
  Erase(top), t = build(1, m, tp[f]);
}
int query(int x, int l0, int r0, int l1, int r1) {
  if (!x) return 0;
  if (l0 <= L[x][0] && R[x][0] <= r0 && l1 <= L[x][1] && R[x][1] <= r1) return sz[x];
  if (r0 < L[x][0] || R[x][0] < l0 || r1 < L[x][1] || R[x][1] < l1) return 0;
  return query(ls(x), l0, r0, l1, r1) + query(rs(x), l0, r0, l1, r1) +
         (l0 <= P[x].x && P[x].x <= r0 && l1 <= P[x].y && P[x].y <= r1);
}
int ans[N], Cnt[N];

signed main() {
#ifdef _WIN64
  freopen("testdata.in", "r", stdin);
#endif
  n = read(), k = read();
  rep(i, 1, n) { p[i].x = read(), p[i].y = read(), p[i].z = read(), p[i].id = i; }
  sort(p + 1, p + n + 1, [](const Point& x, const Point& y) { return x.z == y.z ? cmpx(x, y) : x.z < y.z; });
  for (int l = 1, r; l <= n; l = r + 1) {
    r = l;
    while (r < n && p[r + 1] == p[r]) insert(p[r++]);
    ans[r] = query(root, -1e9, p[r].x, -1e9, p[r].y), Cnt[ans[r]] += r - l + 1, insert(p[r]);
  }
  rep(i, 0, n - 1) print(Cnt[i]);
  return 0;
}

天使玩偶/SJY摆棋子

#include <bits/stdc++.h>
#define rep(i , x , y) for(register int i = (x) , _## i = ((y) + 1) ; i < _## i ; i ++)
#define Rep(i , x , y) for(register int i = (x) , _## i = ((y) - 1) ; i > _## i ; i --)
using namespace std ;
//#define int long long
using ll = long long ;
using pii = pair < int , int > ;
const static int _ = 1 << 20 ;
char fin[_] , * p1 = fin , * p2 = fin ;
inline char gc() {
	return (p1 == p2) && (p2 = (p1 = fin) + fread(fin , 1 , _ , stdin) , p1 == p2) ? EOF : * p1 ++ ;
}
inline int read() {
	bool sign = 1 ;
	char c = 0 ;
	while(c < 48) ((c = gc()) == 45) && (sign = 0) ;
	int x = (c & 15) ;
	while((c = gc()) > 47) x = (x << 1) + (x << 3) + (c & 15) ;
	return sign ? x : -x ;
}
template < class T > void print(T x , char c = '\n') {
	(x == 0) && (putchar(48)) , (x < 0) && (putchar(45) , x = -x) ;
	static char _st[100] ;
	int _stp = 0 ;
	while(x) _st[++ _stp] = x % 10 ^ 48 , x /= 10 ;
	while(_stp) putchar(_st[_stp --]) ;
	putchar(c) ;
}
template < class T > void cmax(T & x , T y) {
	(x < y) && (x = y) ;
}
template < class T > void cmin(T & x , T y) {
	(x > y) && (x = y) ;
}


struct KDT {
	int x , y ;
};
bool cmp1(const KDT & x , const KDT & y) {
	return x.x < y.x ;
}
bool cmp2(const KDT & x , const KDT & y) {
	return x.y < y.y ;
}
int n , m , ans ;
const int N = 3e6 + 10 ;
KDT t[N] ;
int ls[N] , rs[N] , p[N][2] , mx[N][2] , mn[N][2] ;

void pushup(int x) {
	cmax(mx[x][0] , mx[ls[x]][0]) , cmax(mx[x][0] , mx[rs[x]][0]) ;
	cmax(mx[x][1] , mx[ls[x]][1]) , cmax(mx[x][1] , mx[rs[x]][1]) ;
	cmin(mn[x][0] , mn[ls[x]][0]) , cmin(mn[x][0] , mn[rs[x]][0]) ;
	cmin(mn[x][1] , mn[ls[x]][1]) , cmin(mn[x][1] , mn[rs[x]][1]) ;
}
int mxd = 0 , tot = 0 ;
void ins(int & now , int x , int y , int d , int dep) {
	if(! now) {
		now = ++ tot ;
		p[now][0] = x ;
		p[now][1] = y ;
		mx[now][0] = mn[now][0] = x ;
		mx[now][1] = mn[now][1] = y ;
		mxd = dep ;
		return ;
	}
	if(! d && x < p[now][d]) ins(ls[now] , x , y , d ^ 1 , dep + 1) ;
	else if(! d) ins(rs[now] , x , y , d ^ 1 , dep + 1) ;
	else if(y < p[now][d]) ins(ls[now] , x , y , d ^ 1 , dep + 1) ;
	else ins(rs[now] , x , y , d ^ 1 , dep + 1) ;
	pushup(now) ;
}
void qry(int & dis , int x , int y , int now) {
	dis = 0 ;
	if(x > mx[now][0]) dis += x - mx[now][0] ;
	if(x < mn[now][0]) dis += mn[now][0] - x ;
	if(y > mx[now][1]) dis += y - mx[now][1] ;
	if(y < mn[now][1]) dis += mn[now][1] - y ;
}


void query(int now , int x , int y) {
	int disn = abs(x - p[now][0]) + abs(y - p[now][1]) ;
	cmin(ans , disn) ;
	int dl = 0x3f3f3f3f ;
	int dr = dl ;
	if(ls[now]) qry(dl , x , y , ls[now]) ;
	if(rs[now]) qry(dr , x , y , rs[now]) ;
	if(dl < dr) {
		if(dl < ans) query(ls[now] , x , y) ;
		if(dr < ans) query(rs[now] , x , y) ;
	} else {
		if(dr < ans) query(rs[now] , x , y) ;
		if(dl < ans) query(ls[now] , x , y) ;
	}
}

int build(int l , int r , int d) {
	if(l > r) return 0 ;
	int mid = l + r >> 1 ;
	nth_element(t + l , t + mid , t + r + 1 , d ? cmp1 : cmp2) ;
	int now = ++ tot ;
	mx[now][0] = mn[now][0] = p[now][0] = t[mid].x ;
	mx[now][1] = mn[now][1] = p[now][1] = t[mid].y ;
	ls[now] = build(l , mid - 1 , d ^ 1) ;
	rs[now] = build(mid + 1 , r , d ^ 1) ;
	pushup(now) ;
	return now ;
}

signed main() {
#ifdef _WIN64
	freopen("testdata.in" , "r" , stdin) ;
#endif
	memset(mn , 0x3f , sizeof(mn)) ;
	memset(mx , 0xcf , sizeof(mx)) ;
	n = read() ;
	m = read() ;
	rep(i , 1 , n) {
		t[i].x = read() ;
		t[i].y = read() ;
	}
	build(1 , n , 0) ;
	int rt = 1 ;
	rep(i , 1 , m) {
		int opt = read() , x = read() , y = read() ;
		if(opt == 1) {
			ins(rt , x , y , 0 , 1) ;
			t[++ n] = { x , y } ;
			if(mxd > sqrt(tot)) tot = 0 , build(1 , n , 0) ;
		} else {
			ans = 0x3f3f3f3f ;
			query(rt , x , y) ;
			print(ans) ;
		}
	}
	return 0 ;
}

巧克力王国

// powered by c++11
// by Isaunoya

#include<bits/stdc++.h>
#define rep(i , x , y) for(register int i = (x) ; i < (y) ; i ++)
using namespace std ;
using db = double ;
using ll = long long ;
using uint = unsigned int ;
#define int long long
using pii = pair < int , int > ;
#define ve vector
#define Tp template
#define all(v) v.begin() , v.end()
#define sz(v) ((int)v.size())
#define pb emplace_back
#define fir first
#define sec second

// the cmin && cmax
Tp < class T > void cmax(T & x , const T & y) {
	if(x < y) x = y ;
}
Tp < class T > void cmin(T & x , const T & y) {
	if(x > y ) x = y ;
}

// sort , unique , reverse
Tp < class T > void sort(ve < T > & v) {
	sort(all(v)) ;
}
Tp < class T > void unique(ve < T > & v) {
	sort(all(v)) ;
	v.erase(unique(all(v)) , v.end()) ;
}
Tp < class T > void reverse(ve < T > & v) {
	reverse(all(v)) ;
}

int n , m , now = 0 ;
struct node {
	int d[2] , ls , rs , val , sum ;
	int mx[2] , mn[2] ;
	bool operator < (const node & other) const {
		return d[now] < other.d[now] ;
	}
} ;
const int maxn = 5e4 + 10 ;
node data[maxn] , qwq[maxn] ;
void pushup(int o) {
	int ls = qwq[o].ls , rs = qwq[o].rs ;
	for(int i = 0 ; i < 2 ; i ++) {
		qwq[o].mx[i] = qwq[o].mn[i] = qwq[o].d[i] ;
		if(ls) {
			cmin(qwq[o].mn[i] , qwq[ls].mn[i]) ;
			cmax(qwq[o].mx[i] , qwq[ls].mx[i]) ;
		}
		if(rs) {
			cmin(qwq[o].mn[i] , qwq[rs].mn[i]) ;
			cmax(qwq[o].mx[i] , qwq[rs].mx[i]) ;
		}
	}
	qwq[o].sum = qwq[o].val ;
	if(ls) qwq[o].sum += qwq[ls].sum ;
	if(rs) qwq[o].sum += qwq[rs].sum ;
}
int build(int l , int r , int p) {
	now = p ;
	int mid = l + r >> 1 ;
	nth_element(data + l , data + mid , data + r + 1) ;
	qwq[mid] = data[mid] ;
	if(l < mid) qwq[mid].ls = build(l , mid - 1 , p ^ 1) ;
	if(r > mid) qwq[mid].rs = build(mid + 1 , r , p ^ 1) ;
	pushup(mid) ; return mid ;
}
int a , b , c ;
int chk(int x , int y) { return x * a + y * b < c ; }
int qry(int p) {
	int cnt = 0 ;
	cnt += chk(qwq[p].mn[0] , qwq[p].mn[1]) ;
	cnt += chk(qwq[p].mn[0] , qwq[p].mx[1]) ;
	cnt += chk(qwq[p].mx[0] , qwq[p].mn[1]) ;
	cnt += chk(qwq[p].mx[0] , qwq[p].mx[1]) ;
	if(cnt == 4) return qwq[p].sum ;
	if(! cnt) return 0 ;
	int res = 0 ;
	if(chk(qwq[p].d[0] , qwq[p].d[1])) res += qwq[p].val ;
	if(qwq[p].ls) res += qry(qwq[p].ls) ;
	if(qwq[p].rs) res += qry(qwq[p].rs) ;
	return res ;
}

int rt = 0 ;
signed main() {
	ios_base :: sync_with_stdio(false) ;
	cin.tie(nullptr) , cout.tie(nullptr) ;
// code begin.
	cin >> n >> m ;
	for(int i = 1 ; i <= n ; i ++) {
		cin >> data[i].d[0] >> data[i].d[1] >> data[i].val ;
	}
	rt = build(1 , n , 0) ;
	for(int i = 1 ; i <= m ; i ++) {
		cin >> a >> b >> c ;
		cout << qry(rt) << '\n' ;
	}
	return 0 ;
// code end.
}
posted @ 2020-01-30 20:14  _Isaunoya  阅读(392)  评论(1编辑  收藏  举报