一名苦逼的OIer,想成为ACMer

Iowa_Battleship

洛谷2971 [USACO10HOL]牛的政治Cow Politics

原题链接

假设只有一个政党,那么这题就退化成求树的直径的问题了,所以我们可以从此联想至\(k\)个政党的情况。
先处理出每个政党的最大深度,然后枚举每个政党的其它点,通过\(LCA\)计算长度取\(\max\)即可。
因为枚举只是枚举该政党的所有点,所以总的枚举复杂度依旧是\(O(n)\),总复杂度\(O(nlog_2n)\)

#include<cstdio>
#include<cmath>
using namespace std;
const int N = 2e5 + 10;
const int M = N << 1;
const int K = 19;
int fi[N], di[M], ne[M], f[N][K], de[N], p[N], ma_p[N], ma_de[N], an[N], gn, l;
inline int re()
{
	int x = 0;
	char c = getchar();
	bool p = 0;
	for (; c < '0' || c > '9'; c = getchar())
		p |= c == '-';
	for (; c >= '0' && c <= '9'; c = getchar())
		x = x * 10 + c - '0';
	return p ? -x : x;
}
inline void add(int x, int y)
{
	di[++l] = y;
	ne[l] = fi[x];
	fi[x] = l;
}
inline int maxn(int x, int y)
{
	return x > y ? x : y;
}
inline void sw(int &x, int &y)
{
	int z = x;
	x = y;
	y = z;
}
void dfs(int x)
{
	int i, y;
	if (ma_de[p[x]] < de[x])
	{
		ma_de[p[x]] = de[x];
		ma_p[p[x]] = x;
	}
	for (i = 1; i <= gn; i++)
		f[x][i] = f[f[x][i - 1]][i - 1];
	for (i = fi[x]; i; i = ne[i])
		if (!de[y = di[i]])
		{
			f[y][0] = x;
			de[y] = de[x] + 1;
			dfs(y);
		}
}
int lca(int x, int y)
{
	int i;
	if (de[x] > de[y])
		sw(x, y);
	for (i = gn; ~i; i--)
		if (de[f[y][i]] >= de[x])
			y = f[y][i];
	if (!(x ^ y))
		return x;
	for (i = gn; ~i; i--)
		if (f[x][i] ^ f[y][i])
		{
			x = f[x][i];
			y = f[y][i];
		}
	return f[x][0];
}
int main()
{
	int i, n, m, x, ro;
	n = re();
	m = re();
	gn = log2(n);
	for (i = 1; i <= n; i++)
	{
		p[i] = re();
		x = re();
		if (!x)
		{
			ro = i;
			continue;
		}
		add(i, x);
		add(x, i);
	}
	de[ro] = 1;
	dfs(ro);
	for (i = 1; i <= n; i++)
		an[p[i]] = maxn(an[p[i]], ma_de[p[i]] + de[i] - (de[lca(ma_p[p[i]], i)] << 1));
	for (i = 1; i <= m; i++)
		printf("%d\n", an[i]);
	return 0;
}

posted on 2018-10-26 10:38  Iowa_Battleship  阅读(143)  评论(0编辑  收藏  举报

导航