一名苦逼的OIer,想成为ACMer

Iowa_Battleship

POJ1966 Cable TV Network

原题链接

割去点使得无向图不连通,和最小割相似。
我们可以将点转化成边,这样就能跑最小割了。
枚举每两个不能直接到达的点\(S,T\),使得删去一些点(除去这两个点)使得这两个点不连通(若两点能直接到达显然无解),然后我们按下面的方法建立新图:

  1. 将每个点\(x\),拆成两个点\(x_1,x_2\),对\(\forall x\ne S,x\ne T\),由\(x_1\)\(x_2\)连一条容量为\(1\)的边。
  2. 对于原来图中每条边\((x,y)\),连接\((x_2,y_1)\)\((y_2,x_1)\),容量为\(+\infty\)

然后以\(S_2\)为源点,\(T_1\)为汇点,求最小割即可。
注意\(n\leqslant 1\)或最终求出的最小割为\(+\infty\)时,答案为\(n\)

#include<cstdio>
#include<cstring>
using namespace std;
const int N = 1010;
const int M = 1e4 + 10;
struct eg {
	int x, y;
};
eg b[M];
int fi[N], ne[M], di[M], da[M], cu[N], de[N], q[M << 4], l, st, ed, n, m;
bool a[52][52];
inline int re()
{
	int x = 0;
	char c = getchar();
	bool p = 0;
	for (; c <'0' || c > '9'; c = getchar())
		p |= c == '-';
	for (; c >= '0' && c <= '9'; c = getchar())
		x = x * 10 + c - '0';
	return p ? -x : x;
}
inline void add(int x, int y, int z)
{
	di[++l] = y;
	da[l] = z;
	ne[l] = fi[x];
	fi[x] = l;
	di[++l] = x;
	da[l] = 0;
	ne[l] = fi[y];
	fi[y] = l;
}
inline int minn(int x, int y)
{
	return x < y ? x : y;
}
bool bfs()
{
	int head = 0, tail = 1, i, x, y;
	memset(de, 0, sizeof(de));
	de[st] = 1;
	q[1] = st;
	while (head ^ tail)
	{
		x = q[++head];
		for (i = fi[x]; i; i = ne[i])
			if (!de[y = di[i]] && da[i] > 0)
			{
				de[y] = de[x] + 1;
				if (!(y ^ ed))
					return true;
				q[++tail] = y;
			}
	}
	return false;
}
int dfs(int x, int k)
{
	int y, mi;
	if (!(x ^ ed))
		return k;
	for (int &i = cu[x]; i; i = ne[i])
		if (!(de[y = di[i]] ^ (de[x] + 1)) && da[i] > 0)
		{
			mi = dfs(y, minn(k, da[i]));
			if (mi > 0)
			{
				da[i] -= mi;
				da[i ^ 1] += mi;
				return mi;
			}
		}
	return 0;
}
void bumap()
{
	int i;
	memset(fi, 0, sizeof(fi));
	l = 1;
	for (i = 1; i <= n; i++)
		if (i ^ (st - n) && i ^ ed)
			add(i, i + n, 1);
	for (i = 1; i <= m; i++)
	{
		add(b[i].x + n, b[i].y, 1e9);
		add(b[i].y + n, b[i].x, 1e9);
	}
}
int main()
{
	int i, j, x, y, s, mi, k, o;
	while (scanf("%d%d", &n, &m) == 2)
	{
		o = n << 1;
		mi = 1e9;
		memset(a, 0, sizeof(a));
		for (i = 1; i <= m; i++)
		{
			x = re() + 1;
			y = re() + 1;
			a[x][y] = a[y][x] = 1;
			b[i].x = x;
			b[i].y = y;
		}
		for (i = 1; i < n; i++)
			for (j = i + 1; j <= n; j++)
				if (!a[i][j])
				{
					st = i + n;
					ed = j;
					bumap();
					s = 0;
					while (bfs())
					{
						for (k = 1; k <= o; k++)
							cu[k] = fi[k];
						while ((x = dfs(st, 1e9)) > 0)
							s += x;
					}
					mi = minn(mi, s);
				}
		printf("%d\n", mi == 1e9 || n <= 1 ? n : mi);
	}
	return 0;
}

posted on 2018-09-18 14:01  Iowa_Battleship  阅读(133)  评论(0编辑  收藏  举报

导航