JoyOI1935 导弹防御塔
原题链接
首先可以二分答案,然后考虑检验答案。
我们可以对炮塔进行拆点,即能发射\(x\)颗导弹就拆成\(n\times x\)个点,作为一个集合,另一个集合则是\(m\)个侵入者,然后对于能在剩余时间攻击到侵入者的炮弹和该侵入者连边,然后跑匈牙利或网络流求二分图最大匹配即可(本质是多重匹配,使用拆点法)。
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
const int N = 55;
const int M = 1e6 + 10;
const int K = 1e5 + 10;
struct dd {
double x, y;
};
dd a[N], b[N];
int fi[K], di[M], ne[M], mtc[K], l, t_2, n, m;
double dis[N][N], t_1;
bool v[K];
inline int re()
{
int x = 0;
char c = getchar();
bool p = 0;
for (; c < '0' || c > '9'; c = getchar())
p |= c == '-';
for (; c >= '0' && c <= '9'; c = getchar())
x = x * 10 + c - '0';
return p ? -x : x;
}
inline void add(int x, int y)
{
di[++l] = y;
ne[l] = fi[x];
fi[x] = l;
}
bool dfs(int x)
{
int i, y;
for (i = fi[x]; i; i = ne[i])
if (!v[y = di[i]])
{
v[y] = 1;
if (!mtc[y] || dfs(mtc[y]))
{
mtc[y] = x;
return true;
}
}
return false;
}
bool judge(double mid)
{
int i, j, s = 0, k = 0;
double T = mid;
memset(fi, 0, sizeof(fi));
memset(mtc, 0, sizeof(mtc));
l = 0;
while (T >= t_1)
{
T -= t_1;
k++;
for (i = 1; i <= m; i++)
for (j = 1; j <= n; j++)
if (dis[j][i] <= T)
add(i, (k - 1) * n + j);
T -= t_2;
}
for (i = 1; i <= m; i++)
{
memset(v, 0, sizeof(v));
if (dfs(i))
s++;
}
return !(s ^ m);
}
int main()
{
int i, j, x, y, V;
double l, r = 3e4, mid;
n = re();
m = re();
l = t_1 = re() * 1.0 / 60;
t_2 = re();
V = re();
for (i = 1; i <= m; i++)
{
a[i].x = re();
a[i].y = re();
}
for (i = 1; i <= n; i++)
{
x = re();
y = re();
for (j = 1; j <= m; j++)
dis[i][j] = sqrt(1.0 * (x - a[j].x) * (x - a[j].x) + 1.0 * (y - a[j].y) * (y - a[j].y)) / V;
}
while (l + 1e-7 < r)
{
mid = (l + r) / 2;
if (judge(mid))
r = mid;
else
l = mid;
}
printf("%.6f", r);
return 0;
}
posted on 2018-09-13 19:44 Iowa_Battleship 阅读(172) 评论(0) 编辑 收藏 举报