一名苦逼的OIer,想成为ACMer

Iowa_Battleship

BZOJ2330或洛谷3275 [SCOI2011]糖果

BZOJ原题链接

洛谷原题链接

很明显的差分约束,但数据范围较大,朴素\(SPFA\)判正环求解会\(T\)(理论上如此,但我看到有挺多人用朴素的还跑得挺快。。),所以需要优化。
我们所建立的有向图中所有边的权值只有\(0\)\(1\),而且若图中有环,那么环上所有边的权值必须为\(0\),否则无解。
所以我们可以用\(tarjan\)找强连通分量并判断每个强连通分量有没有包含权值为\(1\)的边,有则无解。
若有解,就进行缩点,最后得到一张\(DAG\),直接跑\(SPFA\)即可(也可按拓扑序\(DP\),复杂度更低)。
注意有一个数据点是一条长\(10^5\)的链,若\(SPFA\)使用普通数组模拟队列会炸,须用循环队列或\(STL\)

#include<cstdio>
#include<cstring>
using namespace std;
const int N = 1e5 + 10;
const int M = 4e5 + 10;
int fi[N], di[M], ne[M], cfi[N], cdi[M], cne[M], cda[M], da[M], dfn[N], low[N], st[N], bl[N], nw[N], dis[N], si[N], q[M], l, lc, tp, SCC, ti, k;
bool v[N], p;
inline int re()
{
	int x = 0;
	char c = getchar();
	bool p = 0;
	for (; c < '0' || c > '9'; c = getchar())
		p |= c == '-';
	for (; c >= '0' && c <= '9'; c = getchar())
		x = x * 10 + c - '0';
	return p ? -x : x;
}
inline void add(int x, int y, int z)
{
	di[++l] = y;
	da[l] = z;
	ne[l] = fi[x];
	fi[x] = l;
}
inline void add_c(int x, int y, int z)
{
	cdi[++lc] = y;
	cda[lc] = z;
	cne[lc] = cfi[x];
	cfi[x] = lc;
}
inline int minn(int x, int y)
{
	return x < y ? x : y;
}
inline bool judge(int x)
{
	int i;
	for (i = fi[x]; i; i = ne[i])
		if (!(bl[di[i]] ^ SCC) && da[i])
			return true;
	return false;
}
void tarjan(int x)
{
	int i, y;
	dfn[x] = low[x] = ++ti;
	st[++tp] = x;
	v[x] = 1;
	for (i = fi[x]; i && !p; i = ne[i])
	{
		y = di[i];
		if (!dfn[y])
		{
			tarjan(y);
			low[x] = minn(low[x], low[y]);
		}
		else
			if (v[y])
				low[x] = minn(low[x], dfn[y]);
	}
	if (!(low[x] ^ dfn[x]))
	{
		SCC++;
		k = 0;
		do
		{
			y = st[tp--];
			v[y] = 0;
			bl[y] = SCC;
			nw[++k] = y;
			si[SCC]++;
		} while (x ^ y);
		for (i = 1; i <= k && !p; i++)
			if (judge(nw[i]))
				p = 1;
	}
}
int main()
{
	int i, n, m, x, y, z, head = 0, tail = 1;
	long long s = 0;
	n = re();
	m = re();
	for (i = 1; i <= m; i++)
	{
		z = re();
		x = re() + 1;
		y = re() + 1;
		if (!(z ^ 1))
		{
			add(x, y, 0);
			add(y, x, 0);
		}
		else
			if (!(z ^ 2))
				add(x, y, 1);
			else
				if (!(z ^ 3))
					add(y, x, 0);
				else
					if (!(z ^ 4))
						add(y, x, 1);
					else
						add(x, y, 0);
	}
	for (i = 1; i <= n; i++)
		add(1, i + 1, 1);
	for (i = 1; i <= n + 1 && !p; i++)
		if (!dfn[i])
			tarjan(i);
	if (p)
	{
		printf("-1");
		return 0;
	}
	for (z = 1; z <= n + 1; z++)
		for (i = fi[z]; i; i = ne[i])
		{
			y = bl[di[i]];
			x = bl[z];
			if (x ^ y)
				add_c(x, y, da[i]);
		}
	memset(dis, 250, sizeof(dis));
	dis[bl[1]] = 0;
	q[1] = bl[1];
	while (head ^ tail)
	{
		x = q[++head];
		if (!(head ^ M))
			head = 1;
		v[x] = 0;
		for (i = cfi[x]; i; i = cne[i])
		{
			y = cdi[i];
			if (dis[y] < dis[x] + cda[i])
			{
				dis[y] = dis[x] + cda[i];
				if (!v[y])
				{
					q[++tail] = y;
					if (!(tail ^ M))
						tail = 1;
					v[y] = 1;
				}
			}
		}
	}
	for (i = 1; i <= SCC; i++)
		if (i ^ bl[1])
			s += 1LL * si[i] * dis[i];
	printf("%lld", s);
	return 0;
}

posted on 2018-09-12 11:20  Iowa_Battleship  阅读(164)  评论(0编辑  收藏  举报

导航