BZOJ2330或洛谷3275 [SCOI2011]糖果
BZOJ原题链接
洛谷原题链接
很明显的差分约束,但数据范围较大,朴素\(SPFA\)判正环求解会\(T\)(理论上如此,但我看到有挺多人用朴素的还跑得挺快。。),所以需要优化。
我们所建立的有向图中所有边的权值只有\(0\)或\(1\),而且若图中有环,那么环上所有边的权值必须为\(0\),否则无解。
所以我们可以用\(tarjan\)找强连通分量并判断每个强连通分量有没有包含权值为\(1\)的边,有则无解。
若有解,就进行缩点,最后得到一张\(DAG\),直接跑\(SPFA\)即可(也可按拓扑序\(DP\),复杂度更低)。
注意有一个数据点是一条长\(10^5\)的链,若\(SPFA\)使用普通数组模拟队列会炸,须用循环队列或\(STL\)。
#include<cstdio>
#include<cstring>
using namespace std;
const int N = 1e5 + 10;
const int M = 4e5 + 10;
int fi[N], di[M], ne[M], cfi[N], cdi[M], cne[M], cda[M], da[M], dfn[N], low[N], st[N], bl[N], nw[N], dis[N], si[N], q[M], l, lc, tp, SCC, ti, k;
bool v[N], p;
inline int re()
{
int x = 0;
char c = getchar();
bool p = 0;
for (; c < '0' || c > '9'; c = getchar())
p |= c == '-';
for (; c >= '0' && c <= '9'; c = getchar())
x = x * 10 + c - '0';
return p ? -x : x;
}
inline void add(int x, int y, int z)
{
di[++l] = y;
da[l] = z;
ne[l] = fi[x];
fi[x] = l;
}
inline void add_c(int x, int y, int z)
{
cdi[++lc] = y;
cda[lc] = z;
cne[lc] = cfi[x];
cfi[x] = lc;
}
inline int minn(int x, int y)
{
return x < y ? x : y;
}
inline bool judge(int x)
{
int i;
for (i = fi[x]; i; i = ne[i])
if (!(bl[di[i]] ^ SCC) && da[i])
return true;
return false;
}
void tarjan(int x)
{
int i, y;
dfn[x] = low[x] = ++ti;
st[++tp] = x;
v[x] = 1;
for (i = fi[x]; i && !p; i = ne[i])
{
y = di[i];
if (!dfn[y])
{
tarjan(y);
low[x] = minn(low[x], low[y]);
}
else
if (v[y])
low[x] = minn(low[x], dfn[y]);
}
if (!(low[x] ^ dfn[x]))
{
SCC++;
k = 0;
do
{
y = st[tp--];
v[y] = 0;
bl[y] = SCC;
nw[++k] = y;
si[SCC]++;
} while (x ^ y);
for (i = 1; i <= k && !p; i++)
if (judge(nw[i]))
p = 1;
}
}
int main()
{
int i, n, m, x, y, z, head = 0, tail = 1;
long long s = 0;
n = re();
m = re();
for (i = 1; i <= m; i++)
{
z = re();
x = re() + 1;
y = re() + 1;
if (!(z ^ 1))
{
add(x, y, 0);
add(y, x, 0);
}
else
if (!(z ^ 2))
add(x, y, 1);
else
if (!(z ^ 3))
add(y, x, 0);
else
if (!(z ^ 4))
add(y, x, 1);
else
add(x, y, 0);
}
for (i = 1; i <= n; i++)
add(1, i + 1, 1);
for (i = 1; i <= n + 1 && !p; i++)
if (!dfn[i])
tarjan(i);
if (p)
{
printf("-1");
return 0;
}
for (z = 1; z <= n + 1; z++)
for (i = fi[z]; i; i = ne[i])
{
y = bl[di[i]];
x = bl[z];
if (x ^ y)
add_c(x, y, da[i]);
}
memset(dis, 250, sizeof(dis));
dis[bl[1]] = 0;
q[1] = bl[1];
while (head ^ tail)
{
x = q[++head];
if (!(head ^ M))
head = 1;
v[x] = 0;
for (i = cfi[x]; i; i = cne[i])
{
y = cdi[i];
if (dis[y] < dis[x] + cda[i])
{
dis[y] = dis[x] + cda[i];
if (!v[y])
{
q[++tail] = y;
if (!(tail ^ M))
tail = 1;
v[y] = 1;
}
}
}
}
for (i = 1; i <= SCC; i++)
if (i ^ bl[1])
s += 1LL * si[i] * dis[i];
printf("%lld", s);
return 0;
}
posted on 2018-09-12 11:20 Iowa_Battleship 阅读(163) 评论(0) 编辑 收藏 举报