一名苦逼的OIer,想成为ACMer

Iowa_Battleship

POJ3662或洛谷1948 Telephone Lines

二分答案+单源最短路

POJ原题链接

洛谷原题链接

显然可以二分答案,检验\(mid\)可以使用最短路来解决。
将大于\(mid\)的边看成长度为\(1\)的边,说明要使用免费升级服务,否则长度为\(0\)边,即不需要占免费的资格。
然后就可以在上面跑最短路,如果\(dis[n]>k\)说明该答案不可行,将答案改大,否则说明可行,往小的去尝试。
而针对长度只有\(0,1\)的图可以使用双端队列的\(BFS\)来解决,不过我这种懒人就直接跑\(SPFA\)了。

#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int N = 1010;
const int M = 1e4 + 10;
int fi[N], ne[M << 1], di[M << 1], da[M << 1], dis[N], a[M], q[M << 1], l, k, n;
bool v[N];
int re()
{
	int x = 0;
	char c = getchar();
	bool p = 0;
	for (; c<'0' || c>'9'; c = getchar())
		p = (c == '-' || p) ? 1 : 0;
	for (; c >= '0'&&c <= '9'; c = getchar())
		x = x * 10 + (c - '0');
	return p ? -x : x;
}
inline void add(int x, int y, int z)
{
	di[++l] = y;
	da[l] = z;
	ne[l] = fi[x];
	fi[x] = l;
}
bool judge(int o)
{
	memset(dis, 60, sizeof(dis));
	memset(v, 0, sizeof(v));
	int i, x, y, z, head = 0, tail = 1;
	dis[1] = 0;
	q[1] = 1;
	while (head != tail)
	{
		x = q[++head];
		v[x] = 0;
		for (i = fi[x]; i; i = ne[i])
		{
			y = di[i];
			z = da[i] > o ? 1 : 0;
			if (dis[y] > dis[x] + z)
			{
				dis[y] = dis[x] + z;
				if (!v[y])
				{
					q[++tail] = y;
					v[y] = 1;
				}
			}
		}
	}
	if (dis[n] > k)
		return false;
	return true;
}
int main()
{
	int i, m, x, y, ll, r, mid, an = -1;
	n = re();
	m = re();
	k = re();
	for (i = 1; i <= m; i++)
	{
		x = re();
		y = re();
		a[i] = re();
		add(x, y, a[i]);
		add(y, x, a[i]);
	}
	sort(a + 1, a + m + 1);
	ll = 0;
	r = m;
	while (ll <= r)
	{
		mid = (ll + r) >> 1;
		if (judge(a[mid]))
		{
			r = mid - 1;
			an = a[mid];
		}
		else
			ll = mid + 1;
	}
	printf("%d", an);
	return 0;
}

posted on 2018-08-25 20:08  Iowa_Battleship  阅读(164)  评论(0编辑  收藏  举报

导航