【NOIP2016】换教室 题解(期望DP)
前言:状态贼鸡儿多,眼睛快瞎了。
-----------------------
题目大意:给定$n(课程数),m(可换次数),v(教室数),e(无向边数)$,同时给定原定教室$c[i]$和可换教室$d[i]$,换教室成功概率为$k[i]$,边权为$w[i]$。问耗费体力的最小期望值。
-----------------
设$f[i][j][0/1]$表示上完$i$节课,换教室$j$次后($0$表示此刻不换,$1$表示刺客换)的最小期望值。
$C1=c[i-1],C2=c[i],C3=d[i-1],C4=d[i],mp[i][j]表示i到j的距离。$
先考虑不换的情况:
f[i][j][0]=min(f[i][j][0],min(f[i-1][j][0]+dis[c[i-1]][c[i]],f[i-1][j][1]+(1-k[i-1])*dis[c[i-1]][c[i]]+k[i-1]*dis[d[i-1]][c[i]]))
考虑换的情况:
f[i][j][1]=min(f[i][j][1],min(f[i-1][j-1][0]+dis[c[i-1]][c[i]]*(1-k[i])+dis[c[i-1]][d[i]]*k[i],f[i-1][j-1][1]+dis[d[i-1]][d[i]]*k[i-1]*k[i]+dis[d[i-1]][c[i]]*k[i-1]*(1-k[i])+dis[c[i-1]][c[i]]*(1-k[i-1])*(1-k[i])+dis[c[i-1]][d[i]]*(1-k[i-1])*k[i]))