数据结构练手06 二叉搜索树

二叉搜索树的复杂度为(lgN), 二叉搜索树就是已排序数列的二叉树表示法。

二叉搜索树的定义是: 父节点大于等于左孩子,右孩子大于父节点。因此,若是遍历次序为(中序):左孩子,父节点,右孩子,那么我们得到的将是元素从小到大的排列。同时,最左结点最小结点,最右结点是最大结点。

二叉搜索树还有定义的操作便是求前驱结点和后继结点。

以后继结点为例: 若有右子树,则后继结点为右子树的最小结点;若无右子树,则后继结点为某个祖先父节点,其祖先结点(包括自身)为父节点的左孩子。

以前驱为例: 若有左子树,则前驱结点为左子树的最大结点; 若无左子树,则前驱结点为某个祖先父节点,其祖先结点(包括自身)为父节点的右孩子。

插入操作,则需要一层层比较,大于,走右;小于,走左;

删除操作,若该结点任一左右孩子为空,则直接把左/右孩子的子结点作为该结点新的左/右结点; 若左右子树都满,则交换该结点和其后继结点的值,调整连接关系。

注意点:就是要小心下边界条件。

下面插入代码:

  1 #ifndef MY_BISEARCH_TREE_H
  2 #define MY_BISEARCH_TREE_H
  3 #include <iostream>
  4 #include <cassert>
  5 using namespace std;
  6 template<class T>
  7 struct Node{
  8     T datum;
  9     Node<T>* parent;
 10     Node<T>* left;
 11     Node<T>* right;
 12     Node(const T& x=T()) : datum(x),parent(NULL),left(NULL),right(NULL){}
 13     ~Node(){parent=right=left = NULL;}
 14 };
 15 
 16 template<class T>
 17 class bisearchTree{
 18     protected:
 19         Node<T>* root;
 20         int size;
 21     public:
 22         bisearchTree() : size(0) { root = new Node<T>();}
 23         ~bisearchTree();
 24         void destroy();
 25         Node<T>* rt() const {return root->right;}
 26         Node<T>* maxmember(Node<T>* n) const;
 27         Node<T>* minmember(Node<T>* n) const;
 28         Node<T>* search(const T& x) const;
 29         Node<T>* succeed(Node<T>* n) const;
 30         Node<T>* presucceed(Node<T>* n) const;
 31         void inorderwalk(const Node<T>* n) const;
 32         bisearchTree<T>& insert(const T& key);
 33         Node<T>* del(Node<T>* n);
 34         bool isEmpty() const { return size == 0;}
 35         int length() const { return size;}
 36 };
 37 
 38 template<class T>
 39 bisearchTree<T>::~bisearchTree(){
 40     destroy();
 41     delete root;
 42 }
 43 template<class T>
 44 void bisearchTree<T>::destroy()
 45 {
 46     Node<T>* p = root->right;
 47     Node<T>* d;
 48     while(p!=NULL){
 49         d = del(p);
 50         delete d;
 51         d = NULL;
 52         p = root->right;
 53     }
 54     assert(isEmpty());
 55 }
 56 
 57 template<class T>
 58 Node<T>* bisearchTree<T>::maxmember(Node<T>* n) const
 59 {
 60     Node<T>* c = n;
 61     while(c!=NULL){
 62         n = c;
 63         c = c->right;
 64     }
 65     return n;
 66 }
 67 template<class T>
 68 Node<T>* bisearchTree<T>::minmember(Node<T>* n) const
 69 {
 70 
 71     Node<T>* c = n;
 72     while(c!=NULL){
 73         n = c;
 74         c = c->left;
 75     }
 76     return n;
 77 }
 78 template<class T>
 79 Node<T>* bisearchTree<T>::search (const T& x) const
 80 {
 81     Node<T>* p = root->right;
 82     while(p != NULL && p->datum != x){
 83         if (p->datum > x) {
 84             p = p->left;
 85         }else{
 86             p = p->right;
 87         }
 88     }
 89     return p;
 90 }
 91 template<class T>
 92 Node<T>* bisearchTree<T>::succeed(Node<T>* n) const
 93 {
 94     if ((n!=NULL) && (n->right!=NULL)) {
 95         return minmember(n->right);
 96     }
 97     Node<T>* p = n->parent;
 98     while(p!=NULL && p->right == n){
 99         n = p;
100         p = p->parent;
101     }
102     return p;
103 }
104 template<class T>
105 Node<T>* bisearchTree<T>::presucceed(Node<T>* n) const
106 {
107     if ((n!=NULL) && (n->left!=NULL)) {
108         return maxmember(n->left);
109     }
110     Node<T>* p = n->parent;
111     while(p!=NULL && p->left == n){
112         n = p;
113         p = p->parent;
114     }
115     return p;
116 }
117 template<class T>
118 void bisearchTree<T>::inorderwalk (const Node<T>* n) const
119 {
120     if(n != NULL){
121         inorderwalk (n->left);
122         cout << n->datum << " ";
123         inorderwalk (n->right);
124     }
125 }
126 template<class T>
127 bisearchTree<T>& bisearchTree<T>::insert(const T& key)
128 {
129     Node<T>* p = root->right;
130     if(p == NULL){
131         root->right = new Node<T>(key);
132         root->right->parent = NULL;
133         ++size;
134         return *this;
135     }
136     Node<T>* r = p;
137     while(p!=NULL){
138         r = p;
139         if(p->datum > key){
140             p = p->left;
141         }else{
142             p = p->right;
143         }
144     }
145     if(r->datum > key){
146         r->left = new Node<T>(key);
147         r->left->parent = r;
148     }else{
149         r->right = new Node<T>(key);
150         r->right->parent = r;
151     }
152     size++;
153     return *this;
154 }
155 template<class T>
156 Node<T>* bisearchTree<T>::del(Node<T>* n)
157 {
158     Node<T>* d = NULL;
159     if(n->left==NULL || n->right==NULL){
160         d = n;
161     }else{
162         d = succeed(n);
163     }
164     Node<T>* x;
165     if(d->left != NULL){
166         x = d->left;
167     }else{
168         x = d->right;
169     }
170     if( x != NULL)
171         x->parent = d->parent;
172     if( d->parent == NULL)
173         root->right = x;
174     else if(d == d->parent->left){
175         d->parent->left = x;
176     }else{
177         d->parent->right = x;
178     }
179     if(d != n){
180         n->datum = d->datum;
181     }
182     size--;
183     return d;
184 }
185 
186 #endif

 

posted @ 2013-06-02 15:40  xield  阅读(238)  评论(0编辑  收藏  举报