UCF Locals 2015
一开始在搞什么贪心,其实这个数据量就应该是搜索。先确定中心点的位置有至多49个,而其中状态不能确定的只有25个。在搜索到已经被覆盖的状态时直接往下一步走就可以了。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int n, m;
char g[15][15];
char vis[15][15];
struct Cross {
int x, y;
int p;
bool operator<(const Cross &c)const {
return p < c.p;
}
} c[60];
int ctop;
inline void update(const int &i, const int &j, int &rest) {
++vis[i][j];
if(vis[i][j] == 1) {
rest -= 1;
}
}
inline void unupdate(const int &i, const int &j, int &rest) {
--vis[i][j];
if(vis[i][j] == 0) {
rest += 1;
}
}
inline void Update(const int &i, const int &j, int &rest) {
update(i, j, rest);
update(i + 1, j, rest);
update(i, j + 1, rest);
update(i - 1, j, rest);
update(i, j - 1, rest);
}
inline void UnUpdate(const int &i, const int &j, int &rest) {
unupdate(i, j, rest);
unupdate(i + 1, j, rest);
unupdate(i, j + 1, rest);
unupdate(i - 1, j, rest);
unupdate(i, j - 1, rest);
}
int ans;
inline void add_cross(int i, int j) {
if(g[i][j] != '#' || g[i - 1][j] != '#' || g[i][j - 1] != '#' || g[i + 1][j] != '#' || g[i][j + 1] != '#')
return;
++ans;
++vis[i][j];
++vis[i - 1][j];
++vis[i][j - 1];
++vis[i + 1][j];
++vis[i][j + 1];
++ctop;
c[ctop].x = i;
c[ctop].y = j;
c[ctop].p = min(min(i - 1, j - 1), min(n - i, m - j));
}
void dfs(int id, int cur, int rest) {
/*printf("cur=%d\n", cur);
for(int i = 1; i <= n; ++i) {
for(int j = 1; j <= m; ++j) {
if(g[i][j] == '.')
printf("%c", '.');
else {
if(vis[i][j]) {
printf("%c", '*');
} else {
printf("%c", '#');
}
}
}
puts("");
}
puts("");*/
if(rest == 0) {
ans = min(ans, cur);
return;
}
//最优性剪枝+可行性剪枝
if(cur + (rest + 4) / 5 >= ans)
return;
int x = c[id].x, y = c[id].y;
if(id == ctop) {
++cur;
Update(x, y, rest);
if(rest == 0)
ans = min(ans, cur);
UnUpdate(x, y, rest);
--cur;
return;
}
int cntempty = 0;
cntempty += (vis[x][y] == 0);
cntempty += (vis[x - 1][y] == 0);
cntempty += (vis[x][y - 1] == 0);
cntempty += (vis[x + 1][y] == 0);
cntempty += (vis[x][y + 1] == 0);
//优化2:根据没有覆盖的格子数进行判断优先搜索左子树还是右子树,这个值低则更容易覆盖满并更新答案,但也有可能浪费一步
if(cntempty >= 2) {
++cur;
Update(x, y, rest);
dfs(id + 1, cur, rest);
UnUpdate(x, y, rest);
--cur;
dfs(id + 1, cur, rest);
} else {
dfs(id + 1, cur, rest);
++cur;
Update(x, y, rest);
dfs(id + 1, cur, rest);
UnUpdate(x, y, rest);
--cur;
}
return;
}
int main() {
#ifdef Yinku
freopen("Yinku.in", "r", stdin);
#endif // Yinku
int T;
scanf("%d", &T);
for(int ti = 1; ti <= T; ++ti) {
memset(vis, 0, sizeof(vis));
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; ++i) {
scanf("%s", g[i] + 1);
}
int rest = 0;
for(int i = 1; i <= n ; ++i) {
for(int j = 1; j <= m ; ++j) {
if(g[i][j] == '#') {
++rest;
}
}
}
ans = 0, ctop = 0;
for(int i = 2; i <= n - 1; ++i) {
for(int j = 2; j <= m - 1; ++j) {
if(g[i][j] == '#') {
add_cross(i, j);
}
}
}
bool suc = true;
for(int i = 1; i <= n ; ++i) {
for(int j = 1; j <= m ; ++j) {
if(g[i][j] == '#' && vis[i][j] == 0) {
suc = false;
break;
}
}
if(!suc)
break;
}
printf("Image #%d: ", ti);
if(!suc) {
puts("impossible");
} else {
memset(vis, 0, sizeof(vis));
//最外圈的是必选的,可以立刻剪掉,搭配优化2可以将搜索的规模限制在5*5内
int cur = 0;
for(int j = 1; j <= m ; ++j) {
if(g[1][j] == '#' && vis[1][j] == 0) {
++cur;
Update(2, j, rest);
}
if(g[n][j] == '#' && vis[n][j] == 0) {
++cur;
Update(n - 1, j, rest);
}
}
for(int i = 1; i <= n ; ++i) {
if(g[i][1] == '#' && vis[i][1] == 0) {
++cur;
Update(i, 2, rest);
}
if(g[i][m] == '#' && vis[i][m] == 0) {
++cur;
Update(i, m - 1, rest);
}
}
//打乱相邻节点的顺序,可能是负优化因为相邻节点或许可以优先走不印
//random_shuffle(c + 1, c + 1 + ctop);
sort(c + 1, c + 1 + ctop);
dfs(1, cur, rest);
printf("%d\n", ans);
}
puts("");
}
}
网络流,最大权闭合子图。要像下面这样建图:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
/* dinic begin */
const int MAXN = 20100;
const int MAXM = 200100;
//注意网络流要预留反向边
const int INF = 0x3f3f3f3f;
struct Edge {
int to, next, cap, flow;
} edge[MAXM];
int tol;
int head[MAXN];
void init() {
tol = 2;
memset(head, -1, sizeof(head));
}
void addedge(int u, int v, int w, int rw = 0) {
edge[tol].to = v;
edge[tol].cap = w;
edge[tol].flow = 0;
edge[tol].next = head[u];
head[u] = tol++;
edge[tol].to = u;
edge[tol].cap = rw;
edge[tol].flow = 0;
edge[tol].next = head[v];
head[v] = tol++;
}
int Q[MAXN];
int dep[MAXN], cur[MAXN], sta[MAXN];
bool bfs(int s, int t, int n) {
int front = 0, tail = 0;
memset(dep, -1, sizeof(dep[0]) * (n + 1));
dep[s] = 0;
Q[tail++] = s;
while(front < tail) {
int u = Q[front++];
for(int i = head[u]; i != -1; i = edge[i].next) {
int v = edge[i].to;
if(edge[i].cap > edge[i].flow && dep[v] == -1) {
dep[v] = dep[u] + 1;
if(v == t)
return true;
Q[tail++] = v;
}
}
}
return false;
}
int dinic(int s, int t, int n = -1) {
int maxflow = 0;
if(n == -1)
n = t;
n++;//假如把t作为编号最后的点的话传入t就可以了
while(bfs(s, t, n)) {
for(int i = 0; i < n; i++)
cur[i] = head[i];
int u = s, tail = 0;
while(cur[s] != -1) {
if(u == t) {
int tp = INF;
for(int i = tail - 1; i >= 0; i--) {
tp = min(tp, edge[sta[i]].cap - edge[sta[i]].flow);
}
maxflow += tp;
for(int i = tail - 1; i >= 0; i--) {
edge[sta[i]].flow += tp;
edge[sta[i] ^ 1].flow -= tp;
if(edge[sta[i]].cap - edge[sta[i]].flow == 0)
tail = i;
}
u = edge[sta[tail] ^ 1].to;
} else if(cur[u] != -1 && edge[cur[u]].cap > edge[cur[u]].flow
&& dep[u] + 1 == dep[edge[cur[u]].to]) {
sta[tail++] = cur[u];
u = edge[cur[u]].to;
} else {
while(u != s && cur[u] == -1) {
u = edge[sta[--tail] ^ 1].to;
}
cur[u] = edge[cur[u]].next;
}
}
}
return maxflow;
}
/* dinic end */
int main() {
#ifdef Yinku
freopen("Yinku.in", "r", stdin);
#endif // Yinku
int T;
scanf("%d", &T);
for(int ti = 1; ti <= T; ++ti) {
int n;
scanf("%d", &n);
double tmp;
init();
int sum = 0;
for(int i = 1; i <= n; ++i) {
scanf("%lf", &tmp);
int t = round(tmp * 100);
addedge(0, i, t);
sum += t;
//cout << t << endl;
}
for(int i = 1; i <= n; ++i) {
scanf("%lf", &tmp);
int t = round(tmp * 100);
addedge(i, n + n * n + n * n + 1, t);
sum += t;
//cout << t << endl;
}
for(int i = 1; i <= n; ++i) {
for(int j = 1; j <= n; ++j) {
scanf("%lf", &tmp);
int t = round(tmp * 100);
addedge(n + (i - 1)*n + j, i, INF);
addedge(n + (i - 1)*n + j, j, INF);
addedge(0, n + (i - 1)*n + j, t);
sum += t;
//cout << t << endl;
addedge(i, n + n * n + (i - 1)*n + j, INF);
addedge(j, n + n * n + (i - 1)*n + j, INF);
addedge(n + n * n + (i - 1)*n + j, n + n * n + n * n + 1, t);
sum += t;
}
}
//cout << "sum=" << sum << endl;
printf("%.2f\n", (sum - dinic(0, n + n * n + n * n + 1)) / 100.0);
}
}