整数划分问题-解法汇总(暂有DP-递归)
整数划分问题是一个锻炼组合数学,递归以及动态规划很好的例子,虽然问题看似简单,但是其中玄机万千,有人转化成为背包问题,有人用生成函数解,有人以此作为企业面试题目,可见这种问题的认可度还是很高的。
整数划分问题可以出现很多变种问题:
1. 将n划分成若干正整数之和的划分数。(原题)
2. 将n划分成k个正整数之和的划分数。
3. 将n划分成最大数不超过k的划分数。
4. 将n划分成若干奇正整数之和的划分数。
5. 将n划分成若干不同整数之和的划分数......
第2,3,5的Code在北大研究生推免机试(校内)-复杂的整数划分中放出
具体来说,什么是整数划分呢?
- 假设有一个整数 n , 总存在 n=m1+m2+...+mi; (mi为正整数,且1 <= mi <= n),则{m1,m2,...,mi}为n的一个划分。
∞这里我先用动态规划和递归的思想来解答该问题:
- 我们定义一个状态如下: 当max(m1,m2,...,mi)<=m,那么称这一状态属于n的一个m划分。这里我们记n的m划分的个数为f(n,m);
- 举个例子,当n=5时我们可以获得以下这几种划分(注意,例子中m>=5)
5 = 5 ————f(5,5)
= 4 + 1 ————f(5,4)
= 3 + 2 |
= 3 + 1 + 1 ————f(5,3)
= 2 + 2 + 1 |
= 2 + 1 + 1 + 1 ————f(5,2)
= 1 + 1 + 1 + 1 + 1 ————f(5,1)
根据n和m的关系,考虑以下几种情况:
1. 当n=1时,只有一种划分{1};
2. 当m=1时,只有一种划分{1,1,1,...,1};
3. 当n=m时,根据划分中是否包含n,可分为两种情况:
(1) 划分中包含n的情况,只有一个即{n};
(2) 划分中不包含n的情况,这时划分中最大的数字也一定比n小,即n的所有(n-1)划分。
因此 f(n,n) =1 + f(n,n-1);
4. 当n<m时,划分总等同于f(n,n);
5. 但n>m时,根据划分中是否包含最大值m,可以分为两种情况:
(1) 划分中包含m的情况,即{m, {x1,x2,...xi}}, 其中{x1,x2,...xi} 的和为n-m,由于m>n-m,因此是(n-m)的m划分,因此这种划分个数为f(n-m, m);
(2) 划分中不包含m的情况,则划分中所有值都比m小,即n的(m-1)划分,个数为f(n,m-1);因此 f(n, m) = f(n-m, m)+f(n,m-1);
综合以上情况,我们可以看出,上面的结论具有递归定义特征,其中(1)和(2)属于回归条件,(3)和(4)属于特殊情况,将会转换为情况(5)。
而情况(5)为通用情况,属于递推的方法,其本质主要是通过减小m以达到回归条件,从而解决问题。其递推表达式如下:
- f(n, m)= 1; (n=1 or m=1)
- f(n, m)=f(n, n); (n<m)
- 1+ f(n, m-1); (n=m)
- f(n-m,m)+f(n,m-1); (n>m)
依照上述解法,就能够写出如下Code了:
1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 using namespace std; 5 6 #define MAX 51 7 8 int dp[MAX][MAX]; 9 10 void DP() 11 { 12 for (int n = 1; n < MAX; n++) 13 { 14 for (int m = 1; m < MAX; m++) 15 { 16 if (n < m) 17 dp[n][m] = dp[n][n]; 18 else if (n > m) 19 dp[n][m] = dp[n - m][m] + dp[n][m - 1]; 20 else 21 dp[n][m] = 1 + dp[n][m - 1]; 22 } 23 } 24 } 25 26 int main() 27 { 28 int num; //输入整数 29 DP(); 30 while (scanf("%d", &num) != EOF) 31 printf("%d\n", dp[num][num]); 32 33 return 0; 34 }
其他变种:
1.将n划分成不大于m的划分法:
1).若是划分多个整数可以存在相同的:
dp[n][m]= dp[n][m-1]+ dp[n-m][m]
dp[n][m]表示整数 n 的划分中,每个数不大于 m 的划分数。
则划分数可以分为两种情况:
a.划分中每个数都小于 m,相当于每个数不大于 m- 1, 故划分数为 dp[n][m-1].
b.划分中有一个数为 m. 那就在 n中减去 m ,剩下的就相当于把 n-m 进行划分, 故划分数为 dp[n-m][m];
2).若是划分多个不同的整数:
dp[n][m]= dp[n][m-1]+ dp[n-m][m-1]
dp[n][m]表示整数 n 的划分中,每个数不大于 m 的划分数。
同样划分情况分为两种情况:
a.划分中每个数都小于m,相当于每个数不大于 m-1,划分数为 dp[n][m-1].
b.划分中有一个数为 m.在n中减去m,剩下相当对n-m进行划分,
并且每一个数不大于m-1,故划分数为 dp[n-m][m-1]
3).将n划分成k个数的划分法:
dp[n][k]= dp[n-k][k]+ dp[n-1][k-1];
方法可以分为两类讨论:
第一类: n 份中不包含 1 的分法,为保证每份都 >= 2,可以先拿出 k 个 1 分
到每一份,然后再把剩下的 n- k 分成 k 份即可,分法有: dp[n-k][k]
第二类: n 份中至少有一份为 1 的分法,可以先拿出一个 1 作为单独的1份,剩
下的 n- 1 再分成 k- 1 份即可,分法有:dp[n-1][k-1]
4).将n划分成奇正整数的划分法:
只需将1)中第二重循环的m++改成m+=2,因为 <=某偶数 和 <= 某偶数-1 是相同的描述
- 以上三种的代码在北大2014研究生推免机试(校内)-复杂的整数划分中放出