PyTorch基础

Infi-chu:

http://www.cnblogs.com/Infi-chu/

torch.FloatTensor:用于生成数据类型为浮点型的Tensor,参数可以是一个列表,也可以是一个维度。
import torch
a = torch.FloatTensor(3,4)  # 3行4列
a = torch.FloatTensor([2,3,4,5])    # 一个列表
torch.IntTensor:用于生成数据类型为整型的Tensor,参数可以是一个列表,也可以是一个维度。
a = torch.IntTensor(3,4)    # 3行4列
a = torch.IntTensor([3,4,5,6])  # 一个列表
torch.rand:用于生成数据类型为浮点型且维度指定的Tensor,与NumPy的numpy.rand相似,随机生成的浮点数据在0-1区间均匀分布
a = torch.rand(2,3)

torch.randn:用于生成数据类型为浮点型且维度指定的随机Tensor,与NumPy的numpy.randn相似,随机生成的浮点数的取值满足均值为0,方差为1的正太分布。
a = torch.randn(2,2)
torch.range:用于生成数据类型为浮点型的且自定义取值范围的Tensor,参数有三个:起始值、结束值、步长
a = torch.range(1,20,1)
torch.zeros:用于生成数据类型为浮点型且维度指定的Tensor,元素全为0
a = torch.zeros(1,1)
torch.abs(a):各项参数的绝对值
torch.add(a,b):求和
torch.clamp(a,b,c):对输入的参数按照自定义范围进行裁剪,参数有3个:裁剪对象、裁剪的上、下界。(将区间里面的东西减掉)
torch.div(a,b):求商
torch.mul(a,b):求积(不一定是矩阵)
torch.pow(a,b):求幂
torch.mm(a,b):求积(按矩阵和矩阵之间的规则做)
torch.mv(a,b):求积(按矩阵和向量之间的规则做)


posted @ 2018-11-23 16:56  Infi_chu  阅读(2218)  评论(0编辑  收藏  举报