[数据结构]ODT(珂朵莉树)实现及其应用,带图

[数据结构]ODT(珂朵莉树)实现及其应用,带图

算法引入

需要一种这样的数据结构,需要支持区间的修改,区间不同值的分别操作。

一般的,我们会想到用线段树或者Splay等支持序列操作的数据结构。但是我们这里讲引入一种更加简单的数据结构。

算法介绍

节点信息

节点定义

ODT的基本节点将保存如下信息。

  1. 该节点所代表序列的左右区间

  2. 该节点所代码的区间的值

    C++代码如下

    struct Odt_Node
    {
        int l, r;
        int val;
    };
    

可以发现一个ODT节点需要代表的是一块值全部相同的区间

节点信息维护

ODT基本节点可以由各种数据结构进行维护,一般我们使用C++自带的数据结构std::set。

按节点的左端点进行升序排序。这样我们就可以完整的保存一个1~n的序列信息了。

C++代码如下

inline bool operator<(const Odt_Node &a, const Odt_Node &b)
{
    return a.l < b.l;
}

基本操作

操作名 含义
split(x) 把ODT节点(区间)单独分开,使得有一个子节点(区间)的左端点为x。(在x之前把区间分裂开)
assign(l,r,val) 把区间[l,r]全部赋值为val
Split实现

首先我们需要找到x点的位置。这里我们使用的是set的upper_bound函数,利用这个函数我们可以轻松的找到第一个开头大于x的区间,而x就在这个区间的前一个区间里面。

当然如果前一个区间开头刚好是x,那就可以直接返回这个区间节点对应的迭代器。

  1. 如果区间开头不是x,那就说明x在这个区间里面,我们要做的就是把这个区间分裂开。

  2. 首先我们记录我们要分裂的这个区间的左右端点,以及数值。

  3. 然后我们就可以把要分裂的这个区间节点从set里删除了。

  4. 再插入两个新节点(一个是 "L->(x-1)" 另一个是 "x->R")。

  5. 直接返回x开头的那个元素的迭代器就好了

flowchart TB A["L->R"]-->B["L->(x-1)"] A["L->R"]-->C["x->R"]

差不多就上面这个样子。

代码如下

inline auto split(int x)
{
    if (x > n)
        return S.end();
    auto iter = --S.upper_bound({x, 0, 0});
    if (iter->l == x)
        return iter;
    int l = iter->l, r = iter->r;
    char v = iter->v;
    S.erase(iter);
    S.insert({l, x - 1, v});
    return S.insert({x, r, v}).first;
}
Assign实现

Assign的作用就是区间赋值。既然我们需要进行区间赋值,那么我们就要把这个区间整出来。我们把区间的左右端点分割开了

如果从区间上看就是这样

graph LR A["..."]-->B["L-..."].->C["..."].->D["...-(R-1)"]-->E["R-...."]-->F["..."]

这时候我们只需要把[L,R)之间的节点删除就好了。

然后插入一个新的直接[L,R)的区间节点。

有点像是把这些零零碎碎的节点直接推平重整

代码如下

inline void assign(int l, int r, char v)
{
    auto itr = split(r + 1), itl = split(l);
    S.erase(itl, itr);
    S.insert({l, r, v});
}

特殊操作

排序算法

有时候我们不仅仅需要满足区间修改这个操作。我们可能还需要进行区间排序。

怎么实现呢?我们当然不可能在ODT里跑一个数组里的那样的排序算法,难写,而且浪费时间

我们考虑到排序操作的影响结果——就是把第几小的放到前面。

这和ODT的区间修改不谋而合。我们只需要统计出各个数的数量,然后从小到大依次修改对应的区间就好了。

至于统计出现数的数量,你可以使用桶排序(数组或者map都行)。

一般题目也是要求给一个字符串排序。

代码如下

int cnt['Z' + 1];

inline void conut(int l, int r)
{
    memset(cnt, 0, sizeof cnt);
    auto itr = split(r + 1), itl = split(l);
    for (auto i = itl; i != itr; i++)
    {
        cnt[i->v] += i->r - i->l + 1;
    }
}

inline void sort(int l, int r)
{
    conut(l, r);
    int nl = l;
    for (int i = 'A'; i <= 'Z'; i++)
    {
        assign(nl, nl + cnt[i] - 1, i);
        nl += cnt[i];
    }
}
posted @ 2021-08-17 15:12  Icys  阅读(881)  评论(0编辑  收藏  举报