11-verilog-有限状态机

有限状态机

写RTL的时候,实现一个功能的时候有很多种方法

  1. 将系统划分为多个状态,状态之间有状态的转移,第一步,第二步......形成有限状态机
  2. 流水线技术设计,从输入到输出有多个步骤,多个步骤可以并行执行
    有限状态机,状态是有限的,比如8个状态,16个状态等,在进行设计的时候,状态机的状态不要太多,状态超过10个,就会造成设计复杂度和验证复杂度都变高.

有限状态机分类

  1. Moore FSM
    输出只与当前的状态有关,与输入没有关系
  2. Mealy FSM
    输出不仅与当前的状态有关,还与输入有关

Moore FSM-设计自动售货机

分析输入输出信号

  • 自动售货机,输入的就是硬币,输出的是饮料和找零 (确定输入,输出)
  • 假设饮料只有一种价格2.5元,输入的零钱只有一元和五角(两种状态,用1bit表示),找零的情况只有两种0元和5角(用1bit表示)(确定输出输出的状态,用几位的信号表示)

定义接口

  • 状态机要存储一些状态,肯定会有一些寄存器,会有时钟和复位信号
  • 在设计一个模块的时候,最先确定输入输出的端口和位宽以及时序

定义时序

  • 输入的一元和五角不能同时为1(确定输入的约束)

内部实现--画出状态转移图

要存储当前已经存储了多少钱,初始状态时0,可以收到1元和5角

  • IDLE就是当前系统是空闲状态,没有收到任何的投币
  • 这是一个Moore类型的有限状态机,输出只与当前的状态有关
    Moore有限状态机电路特点
  1. 输入与当前的状态有关,所以需要一个寄存器存储当前的状态
  2. 寄存器存储的状态输入给组合逻辑之后,进行输出
  3. 输入与当前的状态值,经过组合逻辑之后,输入给寄存器
  4. 时序清晰,输入和输出,没有一条直接的组合逻辑路径;如果输入经过组合逻辑,没有经过寄存器,直接输出,这样的设计不好;因为不知道周围环境的组合逻辑的时序是多少

Code

module drink_status_moore(
  input clk,
  input reset,
  input half,
  input one,
  output out,
  output cout
);
  parameter [2:0] s0 = 3'b000,
                  s1 = 3'b001,
                  s2 = 3'b010,
                  s3 = 3'b011,
                  s4 = 3'b100,
                  s5 = 3'b101,
                  s6 = 3'b110;   //定义6个状态
  reg [2:0] curr_state;     //当前状态  CS
  reg [2:0] next_state;     //下一个状态 NS  reg定义的信号不一定是寄存器
  
  //第一段:声明一个寄存器,state transfer
  always @ (posedge clk ,negedge reset) begin
    if(~reset)
     curr_state <= s0;      //这里时钟来了之后,就寄存器传输,寄存器功耗比较大,需要给寄存器传输添加条件
    else
     curr_state <= #1 next_state; 
  end
  //第二段,根据条件写出中间状态转移
  always @ (curr_state,half,one) begin
    case(curr_state)
      s0:begin
         if(half)           next_state = s1;    //如果两个投币口,就会出现问题,一次投入可能为1.5元,所以要给输入添加约束
         else if(one)       next_state = s2;    //文件和文件之间需要进行一些约束
         else               next_state = S0;
         end
      s1:begin
         if(half)           next_state = s2;
         else if(one)       next_state = s3;
         else               next_state = S1;
         end
      s2:begin
         if(half)           next_state = s3;
         else if(one)       next_state = s4;
         else               next_state = S2;
         end
      s3:begin
         if(half)           next_state = s4;
         else if(one)       next_state = s5;
         else               next_state = S3;
         end
      s4:begin
         if(half)           next_state = s5;
         else if(one)       next_state = s6;
         else               next_state = S4;
         end
      s5:begin
                            next_state = s0;
         end
      s6:begin
                            next_state = s0;
         end
      default:              next_state = s0;
  end
  //第三段,写出输出
  assign out = (curr_state == s5) || (curr_State = s6) ? 1:0;
  assign cout = (curr_state == s6) ? 1:0;
endmodule

FSM 三段式的书写方式

mealy FSM-自动售货机

  • 相当于在当前状态,考虑之后输入的状态
  • 输入经过组合逻辑之后直接得到输出
module drink_status_moore(
  input clk,
  input reset,
  input half,
  input one,
  output out,
  output cout
);
  parameter [2:0] s0 = 3'b000,
                  s1 = 3'b001,
                  s2 = 3'b010,
                  s3 = 3'b011,
                  s4 = 3'b100;  //定义6个状态,变量名需要更加具有含义

  reg [2:0] curr_state;     //当前状态  CS
  reg [2:0] next_state;     //下一个状态 NS  reg定义的信号不一定是寄存器
  
  //第一段:声明一个寄存器,state transfer
  always @ (posedge clk ,negedge reset) begin
    if(~reset)
     curr_state <= s0;      //这里时钟来了之后,就寄存器传输,寄存器功耗比较大,需要给寄存器传输添加条件
    else
     curr_state <= #1 next_state; 
  end
  //第二段,根据条件写出中间状态转移
  always @ (*) begin
    case(curr_state)
      s0:begin
         if(half)           next_state = s1;    //如果两个投币口,就会出现问题,一次投入可能为1.5元,所以要给输入添加约束
         else if(one)       next_state = s2;    //文件和文件之间需要进行一些约束
         else               next_state = S0;
         end
      s1:begin
         if(half)           next_state = s2;
         else if(one)       next_state = s3;
         else               next_state = S1;
         end
      s2:begin
         if(half)           next_state = s3;
         else if(one)       next_state = s4;
         else               next_state = S2;
         end
      s3:begin
         if(half)           next_state = s4;
         else if(one)       next_state = s0;
         else               next_state = S3;
         end
      s4:begin
         if(half)           next_state = s0;
         else if(one)       next_state = s0;
         else               next_state = S4;
         end
      default:              next_state = s0;
    endcase
  end
  //第三段,写出输出
  assign out = ((curr_state == s4) & (half | one)) ? 1:
               ((curr_state == s3) & (one)) ? 1 : 0;
  assign cout = (curr_state == s4) & (one) ? 1 : 0;
endmodule

FSM有限状态机的设计步骤

  1. 接口定义(信号\位宽\约束)
  2. 状态定义和编码
  3. 状态转换图
  4. 按照三段式风格实现RTL代码
  5. 编写Testbench
  6. 使用QuestaSim进行编译和仿真
  7. 通过波形工具查看激励\状态信号和输出信号
  • Moore机输出只与当前状态有关
  • Mealy输出不仅与当前的状态有关,还与当前的输入有关

状态机的电路逻辑图

FSM要注意的问题

  1. case语句,要将所有的case列全
  2. 使用default语句还原状态;如果不写default,就需要写够所有可能

序列检测器

  • 输入就是1bit的x,输出的y也是1bity
  • 定义当前的状态,存储之前存储的序列是怎样的状态,初始为IDLE,中间状态可能会出现中间状态
  • IDLE在定义的时候,检测的序列是从1开始的,IDLE可以直接设计为初始值为1,中间状态出现01,10等不对的状态,可以取消掉


module seq(in,out,clk,reset,state);
  input in;
  input clk;
  input reset;
  output out;
  output [2:0] state;
  
  reg [2:0] curr_state;
  reg [2:0] next_state;
  
  parameter [2:0] s0 = 3'b000,
                  s1 = 3'b001,
                  s2 = 3'b010,
                  s3 = 3'b011,
                  s4 = 3'b100,
                  s5 = 3'b101,
                  s6 = 3'b110,
                  s7 = 3'b111;

  // 定义寄存器
  always @ (posedge clk , negedge reset)
  begin
    if(~reset)
      curr_state <= S0;
    else
      curr_state <= next_state;
  end
  
  // 写状态转移
  always @ (in,curr_state)
  begin
    case(curr_state)
      s0 : begin 
            if(in == 0)     next_state <= s0;
            else            next_state <= s1;              
           end
      s1 : begin 
            if(in == 0)     next_state <= s0;
            else            next_state <= s2;              
           end
      s2 : begin 
            if(in == 0)     next_state <= s0;
            else            next_state <= s3;              
           end
      s3 : begin 
            if(in == 0)     next_state <= s4;
            else            next_state <= s3;              
           end
      s4 : begin 
            if(in == 0)     next_state <= s5;
            else            next_state <= s1;              
           end
      s5 : begin 
            if(in == 0)     next_state <= s0;
            else            next_state <= s6;              
           end
      s6 : begin 
            if(in == 0)     next_state <= s7;
            else            next_state <= s2;              
           end
      s7 : begin 
            if(in == 0)     next_state <= s0;
            else            next_state <= s1;              
           end
      default:              next_state <= s0;
    endcase
  end
  
  // 输出
  assign out = (curr_state == s7) ? 1 : 0 ;
endmodule
posted @ 2023-02-12 16:25  Icer_Newer  阅读(552)  评论(0编辑  收藏  举报