洛谷P2051 [AHOI2009] 中国象棋(状压dp)

题目简介

n*m的棋盘,对每行放炮,要求每行每列炮数<=2,求方案数%9999973 N,M<=100

题目分析

算法考虑

考虑到N,M范围较小,每一行状态只与前面的行状态有关,考虑状压Dp

算法分析

设dp[i][j][k]表示放了前i行,j列有1个棋子,k列有两个棋子

那么0个棋子就是m-j-k

然后就可以分类讨论了

情况一

第i行不放棋子:直接继承上一行状态,有:f[i][j][k]=f[i-1][j][k]

情况二

第i行只放一个棋子:

1、该棋放在只有一个棋的列上

有f[i][j][k]=f[i-1][j+1][k-1]*(j+1) 因为对于前i-1行,有一个棋子的一列少了1,而因为放置棋子,有两个的棋子又多了一列,又因为该棋子可以随便放在只有一个棋的列上,所以要乘(j+1)

有:f[i][j][k]=f[i-1][j+1][k-1]*(j+1)

2、该棋放在没有棋子的列上

同理,即f[i-1][j-1][k]可以转移到f[i][j][k]

又因为我在空列中的任何一列放置这个棋子.

所以要×(m-j-k+1)

有:f[i][j][k]=f[i][j][k]+f[i-1][j-1][k]*(m-j-k+1);

情况三

第i行放两个棋子

1、放在一列一个的,一列没有棋子的列上

一个没有棋子的列会变成一个有一个棋子的列,而一个有一个棋子的列会变成一个有两个棋子的列。

此时我们发现,

有一个棋子的列的数量不会变,因此第二维依旧为j,

又因为我们会新增一个有两个棋子的列,所以我们需要从k-1转移过来.

有:f[i][j][k]=f[i][j][k]+f[i-1][j][k-1]*j*(m-j-k+1)

2、放在两个没有棋子的列上

会增加两个新的有一个棋子的列.

因此我们需要从j-2转移过来.

而两个棋子的列的数量并不会改变,所以依旧为k

最后乘C(2,m-k-j+2),因为从没有棋子的列中任选两个

有:f[i][j][k]=f[i][j][k]+f[i-1][j-2][k]*C(2,m-k-j+2)

3、放在两个有一个棋子的列上

这两个有一个棋子的列都会变成有两个子的列.

即j+2变成j,从k-2变成k

最后乘C(2,j+2)因为从有一个棋子的列中任选两个

有:f[i][j][k]=f[i][j][k]+f[i-1][j+2][k-2]*C(2,j+2)

代码

#include<bits/stdc++.h>
#define re register
#define ll long long
using namespace std;
inline int read()
{
	int k=1,sum=0;
	char c=getchar();
	for(;c<'0' || c>'9';c=getchar()) if(c=='-') k=-1;
	for(;c>='0' && c<='9';c=getchar()) sum=sum*10+c-'0';
	return sum*k;
}
int n,m;
const int MOD=9999973,N=1e2+10;
ll f[N][N][N];
inline int C(int x){
	return ((x*(x-1))/2)%MOD;
}
int main()
{
	n=read();m=read();f[0][0][0]=1;
	for(re int i=1;i<=n;++i){
		for(re int j=0;j<=m;++j){
			for(re int k=0;k<=m-j;++k){
				f[i][j][k]=f[i-1][j][k];
				if(k>0 && j+1<=m) f[i][j][k]=(f[i][j][k]+f[i-1][j+1][k-1]*(j+1))%MOD;
				if(j>0) f[i][j][k]=(f[i][j][k]+f[i-1][j-1][k]*(m-j-k+1))%MOD;
				if(k>0) f[i][j][k]=(f[i][j][k]+f[i-1][j][k-1]*j*(m-j-k+1))%MOD;
				if(k>1) f[i][j][k]=(f[i][j][k]+f[i-1][j+2][k-2]*C(j+2))%MOD;
				if(j>1) f[i][j][k]=(f[i][j][k]+f[i-1][j-2][k]*C(m-k-j+2))%MOD;
				f[i][j][k]%=MOD;
			}
		}
	}
	int ans=0;
	for(re int j=0;j<=m;++j)
	for(re int k=0;k<=m-j;++k) 
	ans=(ans+f[n][j][k])%MOD;
	cout<<ans;
	return 0;
}
posted @ 2019-08-29 17:24  IcedMoon_YYY  阅读(166)  评论(0编辑  收藏  举报