进制之间转换
1.十----->二折叠
对于整数部分,用被除数反复除以2,除第一次外,每次除以2均取前一次商的整数部分作被除数并依次记下每次的余数。另外,所得到的商的最后一位余数是所求二进制数的最高位。
对于小数部分,采用连续乘以基数2,并依次取出的整数部分,直至结果的小数部分为0为止。故该法称“乘基取整法”。
10进制数转换成二进制数,这是一个连续除以2的过程:
把要转换的数,除以2,得到商和余数,
将商继续除以2,直到商为0。最后将所有余数倒序排列,得到数就是转换结果。
比如要转换6为二进制数。
“把要转换的数,除以2,得到商和余数”。
“将商继续除以2,直到商为0……”
现在商是3,还不是0,所以继续除以2。
那就: 3 ÷ 2, 得到商是1,余数是1。
“将商继续除以2,直到商为0……”
现在商是1,还不是0,所以继续除以2。
那就: 1 ÷ 2, 得到商是0,余数是1
“将商继续除以2,直到商为0……最后将所有余数倒序排列”
现在商已经是0。
三次计算依次得到余数分别是:0、1、1,将所有余数倒序排列,那就是:110了!
6转换成二进制,结果是110。
2.二---->十折叠
二进制数转换为十进制数
二进制数第0位的权值是2的0次方,第1位的权值是2的1次方……
所以,设有一个二进制数:0110 0100,转换为10进制为:
下面是竖式:
0110 0100 换算成 十进制
" ^ " 为次方
第0位 0 * 2^0 = 0
第1位 0 * 2^1 = 0
第2位 1 * 2^2 = 4
第3位 0 * 2^3 = 0
第4位 0 * 2^4 = 0
第5位 1 * 2^5 = 32
第6位 1 * 2^6 = 64
第7位 0 * 2^7 = 0 +
公式:第N位2^(N)
---------------------------
100
用横式计算为:
0 * 2 ^ 0 + 0 * 2 ^ 1 + 1 * 2 ^ 2 + 0 * 2 ^ 3 + 0 * 2 ^ 4 + 1 * 2 ^ 5 + 1 * 2 ^ 6 + 0 * 2 ^ 7 = 100
0乘以多少都是0,所以我们也可以直接跳过值为0的位:
1 * 2 ^ 2 + 1 * 2 ^ 5 + 1 * 2 ^ 6 = 100
3.十---->八折叠
10进制数转换成8进制的方法,和转换为2进制的方法类似,唯一变化:除数由2变成8。
如何将十进制数120转换成八进制数。
用表格表示:
120÷8商15余0
15÷8商1余7
1÷8商0余1
120转换为8进制,结果为:170。
4.八---->十折叠
八进制就是逢8进1。
八进制数采用 0~7这八数来表达一个数。
八进制数第0位的权值为8的0次方,第1位权值为8的1次方,第2位权值为8的2次方……
例:1507,转换为十进制为:
用竖式表示:
1507换算成十进制。
第0位 7 * 8^0 = 7
第1位 0 * 8^1 = 0
第2位 5 * 8^2 = 320
第3位 1 * 8^3 = 512
--------------------------
839
同样,我们也可以用横式直接计算:
7 * 8^0 + 0 * 8^1 + 5 * 8^2 + 1 * 8^3 = 839
结果是,八进制数 1507 转换成十进制数为 839
5.十---->十六折叠
10进制数转换成16进制的方法,和转换为2进制的方法类似,唯一变化:除数由2变成16。
同样是120,转换成16进制则为:
120÷16商7余8
7÷16商0余7
120转换为16进制,结果为:78。
6.十六---->十折叠
16进制就是逢16进1,但我们只有0~9这十个数字,所以我们用A,B,C,D,E,F这六个字母来分别表示10,11,12,13,14,15。字母不区分大小写。
十六进制数的第0位的权值为16的0次方,第1位的权值为16的1次方,第2位的权值为16的2次方……
在第N(N从0开始)位上,如果是是数 X (X 大于等于0,并且X小于等于 15,即:F)表示的大小为 X * 16的N次方。
例有一个十六进数 2AF5, 那么如何换算成10进制
用竖式计算:
2AF5换算成10进制:
第0位: 5 * 16^0 = 5
第1位: F * 16^1 = 240
第2位: A * 16^2 = 2560
第3位: 2 * 16^3 = 8192 +
-------------------------------------
10997
直接计算就是:
5 * 16^0 + F * 16^1 + A * 16^2 + 2 * 16^3 = 10997
(别忘了,在上面的计算中,A表示10,而F表示15)
现在可以看出,所有进制换算成10进制,关键在于各自的权值不同。
十进数 1234 为什么是 一千二百三十四?算式:
1234 = 1 * 10^3 + 2 * 10^2 + 3 * 10^1 + 4 * 10^0
7.二---->八折叠
(11001.101)(二)
整数部分: 从后往前每三位一组,缺位处用0填补,然后按十进制方法进行转化, 则有:
001=1
011=3
然后我们将结果按从下往上的顺序书写就是:31,那么这个31就是二进制11001的八进制形式
小数部分: 从前往后每三位一组,缺位处用0填补,然后按十进制方法进行转化, 则有:
101=5
然后我们将结果部分按从上往下的顺序书写就是:5,那么这个5就是二进制0.101的八进制形式
小数部分
所以:(11001.101)(二)=(31.5)(八)
8.八---->二折叠
(31.5)(八)
整数部分:从后往前每一位按十进制转化方式转化为三位二进制数,缺位处用0补充 则有:
1---->1---->001
3---->11
然后我们将结果按从下往上的顺序书写就是:11001,那么这个11001就是八进制31的二进制形式
小数部分:从前往后每一位按十进制转化方式转化为三位二进制数,缺位处用0补充 则有:
5---->101
然后我们将结果按从下往上的顺序书写就是:101,那么这个101就是八进制5的二进制形式
所以:(31.5)(八)=(11001.101)(二)
9.十六---->二;二---->十六折叠
二进制和十六进制的互相转换比较重要。
一个二进制数:1111,它是多少呢?
可以要这样计算:1 * 2^0 + 1 * 2^1 + 1 * 2^2 + 1 * 2^3 = 1 * 1 + 1 * 2 + 1 * 4 + 1 * 8 = 15。
也可以这样计算1111才4位,所以我们必须直接记住它每一位的权值,并且是从高位往低位记,:8、4、2、1。即,最高位的权值为2^3 = 8,然后依次是 2^2 = 4,2^1=2, 2^0 = 1。
记住8421,对于任意一个4位的二进制数,我们都可以很快算出它对应的10进制值。
仅4位的2进制数 快速计算方法 十进制值 十六进值
1111 = 8 + 4 + 2 + 1 = 15 F
1110 = 8 + 4 + 2 + 0 = 14 E
1101 = 8 + 4 + 0 + 1 = 13 D
1100 = 8 + 4 + 0 + 0 = 12 C
1011 = 8 + 0 + 2+ 1 = 11 B
1010 = 8 + 0 + 2 + 0 = 10 A
1001 = 8 + 0 + 0 + 1 = 9 9
....
0001 = 0 + 0 + 0 + 1 = 1 1
0000 = 0 + 0 + 0 + 0 = 0 0
二进制数要转换为十六进制,就是以4位一段,分别转换为十六进制。
上行为二制数,下面为对应的十六进制:
1111 1101 , 1010 0101 , 1001 1011
F D , A 5 , 9 B
若当我们看到 FD时,将它转换为二进制数呢?
先转换F:
看到F,我们需知道它是15,然后15如何用8421凑呢?应该是8 + 4 + 2 + 1,所以四位全为1 :1111。
接着转换 D:
看到D,知道它是13,13如何用8421凑呢?应该是:8 + 4 + 1,即:1101。
所以,FD转换为二进制数,为: 1111 1101
由于十六进制转换成二进制相当直接,所以,我们需要将一个十进制数转换成2进制数时,也可以先转换成16进制,然后再转换成2进制。
例十进制数 1234转换成二制数,如果要一直除以2,直接得到2进制数,需要计算较多次数。所以我们可以先除以16,得到16进制数:
1234÷16 商77余 2
77÷16 商4 余13 (D)
4 ÷16商 0余 4
结果16进制为: 0x4D2
然后我们可直接写出0x4D2的二进制形式: 0100 1101 0010。
其中对映关系为:
0100 -- 4
1101 -- D
0010 -- 2
如果一个二进制数很长,我们需要将它转换成10进制数时,除了前面学过的方法是,我们还可以先将这个二进制转换成16进制,然后再转换为10进制。