Vector源码解析
Vector简介
1、Vector是矢量队列。它是jdk1.0版本添加的类 继承 AbstractList、实现 List, RandomAccess, Cloneable, java.io.Serializable 这些接口
2、继承 AbstractList,实现List.所有它是一个对队列。支持队列相关的操作
3、Vector 实现 RandomAccess 所有提供随机访问功能,RandmoAccess是java中用来被List实现,为List提供快速访问功能的。在Vector中,我们即可以通过元素的序号快速获取元 素对象;这就是快速随机访问。
4、Vector 实现了Cloneable接口,即实现clone()函数。它能被克隆。
5、Vector 是线程安全的,但也导致了性能要低于ArrayList
Vector的继承关系图
Vector源码解析
package java.util; import java.io.IOException; import java.io.ObjectInputStream; import java.io.StreamCorruptedException; import java.util.function.Consumer; import java.util.function.Predicate; import java.util.function.UnaryOperator; public class Vector<E> extends AbstractList<E> implements List<E>, RandomAccess, Cloneable, java.io.Serializable { //这就是存储数据的数组,注意啦这是一个动态的数组 protected Object[] elementData; //当前元素的个数 protected int elementCount; //容量增长系数,扩容时使用 protected int capacityIncrement; // Vector的序列版本号 private static final long serialVersionUID = -2767605614048989439L; //指定数组的初始化大小,和增长系数。容量不能小于0 public Vector(int initialCapacity, int capacityIncrement) { super(); if (initialCapacity < 0) throw new IllegalArgumentException("Illegal Capacity: "+ initialCapacity); this.elementData = new Object[initialCapacity]; this.capacityIncrement = capacityIncrement; } //指定容量,增长系数未 0 public Vector(int initialCapacity) { this(initialCapacity, 0); } //采用默认 容量 10 增长系数为 0 public Vector() { this(10); } //使用另一个集合构造改集合 public Vector(Collection<? extends E> c) { elementData = c.toArray(); elementCount = elementData.length; // c.toArray可能(错误地)不返回Object [] if (elementData.getClass() != Object[].class) elementData = Arrays.copyOf(elementData, elementCount, Object[].class); } //这时将Veector中的所有数据都拷贝到anArray中去 public synchronized void copyInto(Object[] anArray) { System.arraycopy(elementData, 0, anArray, 0, elementCount); } //缩小当前数组的容量,为当前数组中元素的个数 public synchronized void trimToSize() { modCount++; int oldCapacity = elementData.length; if (elementCount < oldCapacity) { //使用Arrays.copyOf方法将数据中的元素copy到新数组中 elementData = Arrays.copyOf(elementData, elementCount); } } //如有必要,增加当前数组的容量,以确保至少可以保存minCapacity容量参数指定的元素个数 public synchronized void ensureCapacity(int minCapacity) { if (minCapacity > 0) { modCount++; ensureCapacityHelper(minCapacity); } } /** * 和上面方法的功能一样,这么做的原因是这是一个内部使用的方法,使用就没有必要去同步,这样的好处就是可用 * 降低同步所带来的开销 */ private void ensureCapacityHelper(int minCapacity) { if (minCapacity - elementData.length > 0) grow(minCapacity); } //当前数组的最大容量,其实扩容可用扩容到 Integer.MAX_VALUE往下面看就知道了 private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; //Vectory的扩容方法,嗯嗯看看它的扩容机制吧 private void grow(int minCapacity) { int oldCapacity = elementData.length; //新的数组长度 = 旧数组长度 + 增长系数大于0加增长系数 否则 + 旧数组长度 int newCapacity = oldCapacity + ((capacityIncrement > 0) ? capacityIncrement : oldCapacity); //如果计算后还不够就 = 最小扩容数 if (newCapacity - minCapacity < 0) newCapacity = minCapacity; //如果大于最大扩容数 if (newCapacity - MAX_ARRAY_SIZE > 0) /** * hugeCapacity 返回 嗯嗯从这我们可用看错最大看扩容量位Integer.MAX_VALUE * (minCapacity > MAX_ARRAY_SIZE) ?Integer.MAX_VALUE : MAX_ARRAY_SIZE; * */ newCapacity = hugeCapacity(minCapacity); elementData = Arrays.copyOf(elementData, newCapacity); } private static int hugeCapacity(int minCapacity) { if (minCapacity < 0) // overflow throw new OutOfMemoryError(); return (minCapacity > MAX_ARRAY_SIZE) ? Integer.MAX_VALUE : MAX_ARRAY_SIZE; } //设置当前数组的元素个数,如果小于当前元素的个数 //那么就将多出来的元素置空,如果大于数组扩容 public synchronized void setSize(int newSize) { modCount++; if (newSize > elementCount) { ensureCapacityHelper(newSize); } else { for (int i = newSize ; i < elementCount ; i++) { elementData[i] = null; } } elementCount = newSize; } //当前数组的大小 public synchronized int capacity() { return elementData.length; } //元素个数 public synchronized int size() { return elementCount; } //是否为空 public synchronized boolean isEmpty() { return elementCount == 0; } //返回“Vector中全部元素对应的Enumeration(枚举) public Enumeration<E> elements() { //通过匿名类实现 Enumeration 接口 return new Enumeration<E>() { int count = 0; public boolean hasMoreElements() { return count < elementCount; } public E nextElement() { synchronized (Vector.this) { if (count < elementCount) { return elementData(count++); } } throw new NoSuchElementException("Vector Enumeration"); } }; } //是否包含指定元素 public boolean contains(Object o) { //从顶一位开始查找 通过 >= 0 判断是否包含 return indexOf(o, 0) >= 0; } //返回指定元素在数组中的位置 public int indexOf(Object o) { return indexOf(o, 0); } //指定元素 开始位置 返回改元素在数组中的下标 public synchronized int indexOf(Object o, int index) { //判断以下是否位空,为空 用 == 不位空用 equals if (o == null) { //循环查找,找到返回 for (int i = index ; i < elementCount ; i++) if (elementData[i]==null) return i; } else { for (int i = index ; i < elementCount ; i++) if (o.equals(elementData[i])) return i; } //如果每找到返回状态码 -1 return -1; } //重后往前找,元素在数组中的位置。重最后一个元素开始找起 public synchronized int lastIndexOf(Object o) { return lastIndexOf(o, elementCount-1); } //指定查找元素和查找起始位置。从后往前找 public synchronized int lastIndexOf(Object o, int index) { if (index >= elementCount) throw new IndexOutOfBoundsException(index + " >= "+ elementCount); if (o == null) { //就是倒着循环判断 for (int i = index; i >= 0; i--) if (elementData[i]==null) return i; } else { for (int i = index; i >= 0; i--) if (o.equals(elementData[i])) return i; } //找不到一样返回状态码 -1 return -1; } //返回指定下标处的元素 public synchronized E elementAt(int index) { if (index >= elementCount) { throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount); } return elementData(index); } //返回第一个元素 public synchronized E firstElement() { if (elementCount == 0) { throw new NoSuchElementException(); } return elementData(0); } //返回最后一个元素 public synchronized E lastElement() { if (elementCount == 0) { throw new NoSuchElementException(); } return elementData(elementCount - 1); } //修改指定位置的元素 public synchronized void setElementAt(E obj, int index) { if (index >= elementCount) { throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount); } elementData[index] = obj; } //移除指定位置的元素 public synchronized void removeElementAt(int index) { modCount++; if (index >= elementCount) { throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount); } else if (index < 0) { throw new ArrayIndexOutOfBoundsException(index); } //j 是删除元素在数组中的位置 int j = elementCount - index - 1; if (j > 0) { //移动数组位置:新数组位置 = 原数组移除元素的后一位都通过copy向前移动一位 System.arraycopy(elementData, index + 1, elementData, index, j); } elementCount--; //copy会多出来一位,设置位null 让gc做它的工作 elementData[elementCount] = null; /* to let gc do its work */ } //指定位置插入元素 public synchronized void insertElementAt(E obj, int index) { modCount++; if (index > elementCount) { throw new ArrayIndexOutOfBoundsException(index + " > " + elementCount); } //是否需要扩容 ensureCapacityHelper(elementCount + 1); //通过arraycopy方法在插入位置向后移动以为,方便元素插入 System.arraycopy(elementData, index, elementData, index + 1, elementCount - index); elementData[index] = obj; elementCount++; } //添加元 public synchronized void addElement(E obj) { modCount++; ensureCapacityHelper(elementCount + 1); elementData[elementCount++] = obj; } //移除元素 public synchronized boolean removeElement(Object obj) { modCount++; //通过 indexOf获取在数组中的位置 int i = indexOf(obj); if (i >= 0) { removeElementAt(i); return true; } return false; } //删除当前数组中的所有元素 public synchronized void removeAllElements() { modCount++; //让gc做它的工作 for (int i = 0; i < elementCount; i++) elementData[i] = null; elementCount = 0; } //克隆函数 public synchronized Object clone() { try { @SuppressWarnings("unchecked") Vector<E> v = (Vector<E>) super.clone(); //将当前Vector的全部元素拷贝到v中 v.elementData = Arrays.copyOf(elementData, elementCount); v.modCount = 0; return v; } catch (CloneNotSupportedException e) { // this shouldn't happen, since we are Cloneable throw new InternalError(e); } } //返回存有当前集合所有元素引用的数组 public synchronized Object[] toArray() { return Arrays.copyOf(elementData, elementCount); } // 返回Vector的模板数组。所谓模板数组,即可以将T设为任意的数据类型 @SuppressWarnings("unchecked") public synchronized <T> T[] toArray(T[] a) { //如果a的大小小于当前元素的个数 那么就建立新的数组返回 //如果a的大小大于或等于当前元素的大小就将元素copy到a数组中去 if (a.length < elementCount) return (T[]) Arrays.copyOf(elementData, elementCount, a.getClass()); System.arraycopy(elementData, 0, a, 0, elementCount); if (a.length > elementCount) a[elementCount] = null; return a; } //返回指定位置的元素 这个是内部使用 不加锁,但加锁的那个方法 //也是调用此方法。看下面的get方法就指定了 @SuppressWarnings("unchecked") E elementData(int index) { return (E) elementData[index]; } //加锁了 public synchronized E get(int index) { if (index >= elementCount) throw new ArrayIndexOutOfBoundsException(index); return elementData(index); } //修改指定位置的元素 public synchronized E set(int index, E element) { if (index >= elementCount) throw new ArrayIndexOutOfBoundsException(index); E oldValue = elementData(index); elementData[index] = element; return oldValue; } //添加元素 public synchronized boolean add(E e) { modCount++; ensureCapacityHelper(elementCount + 1); elementData[elementCount++] = e; return true; } //移除匹配元素 public boolean remove(Object o) { return removeElement(o); } //指定位置添加元素 public void add(int index, E element) { insertElementAt(element, index); } //指定位置移除元素 并返回被移除的元素 public synchronized E remove(int index) { modCount++; if (index >= elementCount) throw new ArrayIndexOutOfBoundsException(index); E oldValue = elementData(index); int numMoved = elementCount - index - 1; if (numMoved > 0) System.arraycopy(elementData, index+1, elementData, index, numMoved); elementData[--elementCount] = null; // Let gc do its work return oldValue; } //清空集合当前的所有数据 public void clear() { removeAllElements(); } //如果此Vector包含指定Collection中的所有元素,则返回true public synchronized boolean containsAll(Collection<?> c) { return super.containsAll(c); } //将指定集合的所有数据都添加进当前集合 public synchronized boolean addAll(Collection<? extends E> c) { modCount++; Object[] a = c.toArray(); int numNew = a.length; ensureCapacityHelper(elementCount + numNew); System.arraycopy(a, 0, elementData, elementCount, numNew); elementCount += numNew; return numNew != 0; } //当前Vectory中包含指定集合中的元素通通移除掉 public synchronized boolean removeAll(Collection<?> c) { return super.removeAll(c); } //删除“非集合c中的元素” public synchronized boolean retainAll(Collection<?> c) { return super.retainAll(c); } // 从index位置开始,将集合c中所有元素添加到Vector中 public synchronized boolean addAll(int index, Collection<? extends E> c) { modCount++; if (index < 0 || index > elementCount) throw new ArrayIndexOutOfBoundsException(index); Object[] a = c.toArray(); int numNew = a.length; ensureCapacityHelper(elementCount + numNew); int numMoved = elementCount - index; if (numMoved > 0) System.arraycopy(elementData, index, elementData, index + numNew, numMoved); System.arraycopy(a, 0, elementData, index, numNew); elementCount += numNew; return numNew != 0; } //Vector的equals实现,就是调用父类AbstractList的equals方法 public synchronized boolean equals(Object o) { return super.equals(o); } //hashCode码 public synchronized int hashCode() { return super.hashCode(); } //将当前对象转换位字符串 public synchronized String toString() { return super.toString(); } //获取Vector中fromIndex(包括)到toIndex(不包括)的子集 public synchronized List<E> subList(int fromIndex, int toIndex) { return Collections.synchronizedList(super.subList(fromIndex, toIndex), this); } //移除Vectory中 fromIndex 到 toIndex位置上的所有元素 protected synchronized void removeRange(int fromIndex, int toIndex) { modCount++; int numMoved = elementCount - toIndex; System.arraycopy(elementData, toIndex, elementData, fromIndex, numMoved); // Let gc do its work int newElementCount = elementCount - (toIndex-fromIndex); while (elementCount != newElementCount) elementData[--elementCount] = null; } //序列化的写入函数 private void readObject(ObjectInputStream in) throws IOException, ClassNotFoundException { ObjectInputStream.GetField gfields = in.readFields(); int count = gfields.get("elementCount", 0); Object[] data = (Object[])gfields.get("elementData", null); if (count < 0 || data == null || count > data.length) { throw new StreamCorruptedException("Inconsistent vector internals"); } elementCount = count; elementData = data.clone(); } //序列的 private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { final java.io.ObjectOutputStream.PutField fields = s.putFields(); final Object[] data; synchronized (this) { fields.put("capacityIncrement", capacityIncrement); fields.put("elementCount", elementCount); data = elementData.clone(); } fields.put("elementData", data); s.writeFields(); } ///这是返回ListIterator迭代器的方法,指定迭代的开始位置 public synchronized ListIterator<E> listIterator(int index) { if (index < 0 || index > elementCount) throw new IndexOutOfBoundsException("Index: "+index); return new ListItr(index); } //开始位置位 0 定死 public synchronized ListIterator<E> listIterator() { return new ListItr(0); } //这是返回iterator迭代器 public synchronized Iterator<E> iterator() { return new Itr(); } /** * AbstractList.Itr的优化版本 的迭代器实现类 */ private class Itr implements Iterator<E> { int cursor; //要返回的下一个元素的索引 int lastRet = -1; // 返回最后一个元素的索引; -1如果没有, int expectedModCount = modCount; //是否还有下一位 public boolean hasNext() { return cursor != elementCount; } //返回下一位 public E next() { synchronized (Vector.this) { checkForComodification(); int i = cursor; if (i >= elementCount) throw new NoSuchElementException(); cursor = i + 1; return elementData(lastRet = i); } } //移除当前所在光标的元素 public void remove() { if (lastRet == -1) throw new IllegalStateException(); synchronized (Vector.this) { checkForComodification(); Vector.this.remove(lastRet); expectedModCount = modCount; } cursor = lastRet; lastRet = -1; } //这是jdk 1.8新增加的方法,重当前迭代位置开始 每个元素都执行 action的指定操作 @Override public void forEachRemaining(Consumer<? super E> action) { Objects.requireNonNull(action); synchronized (Vector.this) { final int size = elementCount; int i = cursor; if (i >= size) { return; } @SuppressWarnings("unchecked") final E[] elementData = (E[]) Vector.this.elementData; if (i >= elementData.length) { throw new ConcurrentModificationException(); } //循环执行指定操作 while (i != size && modCount == expectedModCount) { action.accept(elementData[i++]); } cursor = i; lastRet = i - 1; checkForComodification(); } } final void checkForComodification() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); } } /** * AbstractList.ListItr的优化版本 ListIterator 实现 */ final class ListItr extends Itr implements ListIterator<E> { //指定当前迭代的下一个位置的构造 ListItr(int index) { super(); cursor = index; } //是否还有上一位 public boolean hasPrevious() { return cursor != 0; } //下一位在数组中的下标 public int nextIndex() { return cursor; } //上一位在数组中的下标 public int previousIndex() { return cursor - 1; } //返回上以为,并移动光标 public E previous() { synchronized (Vector.this) { checkForComodification(); int i = cursor - 1; if (i < 0) throw new NoSuchElementException(); cursor = i; return elementData(lastRet = i); } } //修改当前迭代位置的值 public void set(E e) { if (lastRet == -1) throw new IllegalStateException(); synchronized (Vector.this) { checkForComodification(); Vector.this.set(lastRet, e); } } //在当前迭代位置插入元素 public void add(E e) { int i = cursor; synchronized (Vector.this) { checkForComodification(); Vector.this.add(i, e); expectedModCount = modCount; } cursor = i + 1; lastRet = -1; } } //遍历执行 action 方法 @Override public synchronized void forEach(Consumer<? super E> action) { Objects.requireNonNull(action); final int expectedModCount = modCount; @SuppressWarnings("unchecked") final E[] elementData = (E[]) this.elementData; final int elementCount = this.elementCount; for (int i=0; modCount == expectedModCount && i < elementCount; i++) { action.accept(elementData[i]); } if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } } @Override @SuppressWarnings("unchecked") public synchronized boolean removeIf(Predicate<? super E> filter) { Objects.requireNonNull(filter); // figure out which elements are to be removed // any exception thrown from the filter predicate at this stage // will leave the collection unmodified int removeCount = 0; final int size = elementCount; final BitSet removeSet = new BitSet(size); final int expectedModCount = modCount; for (int i=0; modCount == expectedModCount && i < size; i++) { @SuppressWarnings("unchecked") final E element = (E) elementData[i]; if (filter.test(element)) { removeSet.set(i); removeCount++; } } if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } // 移位幸存元素留在被移除元素留下的空间 final boolean anyToRemove = removeCount > 0; if (anyToRemove) { final int newSize = size - removeCount; for (int i=0, j=0; (i < size) && (j < newSize); i++, j++) { i = removeSet.nextClearBit(i); elementData[j] = elementData[i]; } for (int k=newSize; k < size; k++) { elementData[k] = null; // Let gc do its work } elementCount = newSize; if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } modCount++; } return anyToRemove; } @Override @SuppressWarnings("unchecked") //循环遍历 将执行operator返回的元素替换当前元素 public synchronized void replaceAll(UnaryOperator<E> operator) { Objects.requireNonNull(operator); final int expectedModCount = modCount; final int size = elementCount; for (int i=0; modCount == expectedModCount && i < size; i++) { elementData[i] = operator.apply((E) elementData[i]); } if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } modCount++; } @SuppressWarnings("unchecked") @Override //这是给当前的数据进行排序的方法 Comparator 定义了排序的规则 public synchronized void sort(Comparator<? super E> c) { final int expectedModCount = modCount; Arrays.sort((E[]) elementData, 0, elementCount, c); if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } modCount++; } //当前数据中创建Spliterator @Override public Spliterator<E> spliterator() { return new VectorSpliterator<>(this, null, 0, -1, 0); } //与ArrayList Spliterator类似 static final class VectorSpliterator<E> implements Spliterator<E> { private final Vector<E> list; private Object[] array; private int index; // 当前指数,在提前/拆分时修改 private int fence; // -1直到使用;然后是最后一个索引 private int expectedModCount; //栅栏设置时初始化 /** 创建覆盖给定范围的新分裂器*/ VectorSpliterator(Vector<E> list, Object[] array, int origin, int fence, int expectedModCount) { this.list = list; this.array = array; this.index = origin; this.fence = fence; this.expectedModCount = expectedModCount; } private int getFence() { // 首次使用时初始化 返回数组的元素个数 int hi; if ((hi = fence) < 0) { synchronized(list) { array = list.elementData; expectedModCount = list.modCount; //hi就等于 = list.elementCount 元素个数 hi = fence = list.elementCount; } } return hi; } //重当前对象再分割一个 Spliterator public Spliterator<E> trySplit() { // hi = list.elementCount int hi = getFence(), lo = index, //(lo + hi) / 2 mid = (lo + hi) >>> 1; //看看是否还能拆分出一个 Spliterator 如果拆分不了返回null return (lo >= mid) ? null : new VectorSpliterator<E>(list, array, lo, index = mid, expectedModCount); } @SuppressWarnings("unchecked") //将index + 1位执行 action定义的方法 这是jdk 1.8函数编程所提供出来的 public boolean tryAdvance(Consumer<? super E> action) { int i; if (action == null) throw new NullPointerException(); if (getFence() > (i = index)) { index = i + 1; action.accept((E)array[i]); if (list.modCount != expectedModCount) throw new ConcurrentModificationException(); return true; } return false; } @SuppressWarnings("unchecked") //使用函数式编程 循环数组执行 actioin public void forEachRemaining(Consumer<? super E> action) { int i, hi; // 提升从循环访问和检查 Vector<E> lst; Object[] a; if (action == null) throw new NullPointerException(); if ((lst = list) != null) { if ((hi = fence) < 0) { synchronized(lst) { expectedModCount = lst.modCount; a = array = lst.elementData; hi = fence = lst.elementCount; } } else a = array; if (a != null && (i = index) >= 0 && (index = hi) <= a.length) { //循环执行 while (i < hi) action.accept((E) a[i++]); if (lst.modCount == expectedModCount) return; } } throw new ConcurrentModificationException(); } //计算当前位置到末尾还有多少个元素 public long estimateSize() { return (long) (getFence() - index); } public int characteristics() { return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED; } } }
从源码中我们得出:
1、Vector是使用数组保存数据,和ArrayList套路一样
2、如果每有指定构造Vector那么它的默认容量位 10 增长系数位 0
3、扩容机制:如果增长系数不位 0 那么就是当前容量 + 增长系数,否则就的当前容量加一倍 更详细的化还是看看上面的ensureCapacity()函数,最的扩容量是Integer.MAX_VALUE
4、Vector的克隆函数,即是将全部元素克隆到一个数组中。
遍历方式
1、Iterator迭代器
Iterator iterator = vector.iterator(); while (iterator.hasNext()){ iterator.next(); }
2、java 8 新特性来遍历元素
vector.forEach(a -> {});
3、for循环 使用了随机范围的机制
for (int i = 0; i < vector.size(); i++) { vector.get(i); }
4、Enumeration 遍历
for (Enumeration enu = vector.elements(); enu.hasMoreElements(); ){ enu.nextElement(); }
5、foreach循环
for (Object o: vector) { System.out.println(o); }
各种遍历的性能比较
public static void main(String[] args) { Vector vec = new Vector(); for(int i = 0; i < 10000000; i ++) vec.add(i); iteratorThroughRandomAccess(vec); iteratorThroughIterator(vec); iteratorThroughJ8(vec); iteratorEnumeration(vec); iteratorForEach(vec); } public static void iteratorThroughRandomAccess(Vector vector){ long startTime; long endTime; startTime = System.currentTimeMillis(); for (int i = 0; i < vector.size(); i++) { vector.get(i); } endTime = System.currentTimeMillis(); long interval = endTime - startTime; System.out.println("for循环" + interval + "毫秒"); } public static void iteratorThroughIterator(Vector vector){ long startTime; long endTime; startTime = System.currentTimeMillis(); Iterator iterator = vector.iterator(); while (iterator.hasNext()){ iterator.next(); } endTime = System.currentTimeMillis(); long interval = endTime - startTime; System.out.println("迭代器遍历" + interval + "毫秒"); } public static void iteratorThroughJ8(Vector vector){ long startTime; long endTime; startTime = System.currentTimeMillis(); vector.forEach(a -> {}); endTime = System.currentTimeMillis(); long interval = endTime - startTime; System.out.println("jdk1.8新特性遍历" + interval + "毫秒"); } public static void iteratorEnumeration(Vector vector){ long startTime; long endTime; startTime = System.currentTimeMillis(); for (Enumeration enu = vector.elements(); enu.hasMoreElements(); ){ enu.nextElement(); } endTime = System.currentTimeMillis(); long interval = endTime - startTime; System.out.println("java 枚举遍历历" + interval + "毫秒"); } public static void iteratorForEach(Vector vector){ long startTime; long endTime; startTime = System.currentTimeMillis(); for (Object o: vector) ; endTime = System.currentTimeMillis(); long interval = endTime - startTime; System.out.println("foreach循环" + interval + "毫秒"); }
执行结果:
使用随机访问遍历479毫秒
迭代器 iterator遍历242毫秒
jdk1.8新特性遍历58毫秒
java 枚举遍历历149毫秒
foreach循环143毫秒
参考博客:
https://www.cnblogs.com/skywang12345/p/3308833.html