能量石
题目描述
岩石怪物杜达生活在魔法森林中,他在午餐时收集了 NN 块能量石准备开吃。
由于他的嘴很小,所以一次只能吃一块能量石。
能量石很硬,吃完需要花不少时间。
吃完第 ii 块能量石需要花费的时间为 SiSi 秒。
杜达靠吃能量石来获取能量。
不同的能量石包含的能量可能不同。
此外,能量石会随着时间流逝逐渐失去能量。
第 ii 块能量石最初包含 EiEi 单位的能量,并且每秒将失去 LiLi 单位的能量。
当杜达开始吃一块能量石时,他就会立即获得该能量石所含的全部能量(无论实际吃完该石头需要多少时间)。
能量石中包含的能量最多降低至 0。
请问杜达通过吃能量石可以获得的最大能量是多少?
输入格式
第一行包含整数 TT,表示共有 TT 组测试数据。
每组数据第一行包含整数 NN,表示能量石的数量。
接下来 NN 行,每行包含三个整数 Si,Ei,LiSi,Ei,Li。
输出格式
每组数据输出一个结果,每个结果占一行。
结果表示为 Case #x: y
,其中 xx 是组别编号(从 11 开始),yy 是可以获得的最大能量值。
数据范围
1≤T≤101≤T≤10,
1≤N≤1001≤N≤100,
1≤Si≤1001≤Si≤100,
1≤Ei≤1051≤Ei≤105,
0≤Li≤1050≤Li≤105
输入样例:
3
4
20 10 1
5 30 5
100 30 1
5 80 60
3
10 4 1000
10 3 1000
10 8 1000
2
12 300 50
5 200 0
输出样例:
Case #1: 105
Case #2: 8
Case #3: 500
样例解释
在样例#1中,有 N=4 个宝石。杜达可以选择的一个吃石头顺序是:
- 吃第四块石头。这需要 5 秒,并给他 80 单位的能量。
- 吃第二块石头。这需要 5 秒,并给他 5 单位的能量(第二块石头开始时具有 30 单位能量,5 秒后失去了 25 单位的能量)。
- 吃第三块石头。这需要 100 秒,并给他 20 单位的能量(第三块石头开始时具有 30 单位能量,10 秒后失去了 10 单位的能量)。
- 吃第一块石头。这需要 20 秒,并给他 0 单位的能量(第一块石头以 10 单位能量开始,110 秒后已经失去了所有的能量)。
他一共获得了 105 单位的能量,这是能获得的最大值,所以答案是 105。
在样本案例#2中,有 N=3 个宝石。
无论杜达选择吃哪块石头,剩下的两个石头的能量都会耗光。
所以他应该吃第三块石头,给他提供 8 单位的能量。
在样本案例#3中,有 N=2 个宝石。杜达可以:
- 吃第一块石头。这需要 12 秒,并给他 300 单位的能量。
- 吃第二块石头。这需要 5 秒,并给他 200 单位的能量(第二块石头随着时间的推移不会失去任何能量!)。
所以答案是 500。
算法描述
任选两个相邻能量石i,i+1,假设在t时刻时,两能量石能量分别为E"i,E"i+1,
那么先吃i再吃i+1获得的总能量是E"i+E"i+1−Li+1×Si
交换两块能量石后,获得的总能量石E"i+E"i+1−Li×Si+1
假如Li+1×Si≥Li×Si+1,那么可以说,交换后所能获得的能量更多,因此可得性质1
性质1:如果两相邻能量石i,i+1满足Li+1×Si≥Li×Si+1,那么这两个能量石可进行交换,且交换后能获得更多能量
那么一个任意两相邻能量石都满足Li+1×Si≤Li×Si+1性质的队列,必然是最优吃法序列,因为对于任意一个不满足此性质的最优解队列,都可以对其内部进行调整,且调整后获得的能量不会更少。
所以可以先对能量石按照SiLi进行排序,排序后队列即为最优解法
由此,就将二维背包转换为了一个一维背包
之后再按照01背包进行求解即可
代码实现
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
struct Stone{
int s, e, l;
bool operator< (const Stone &W) const{
return s * W.l < W.s * l;
}
}stones[10010];
int n;
int dp[10010];
int main(){
int T;
cin >> T;
for(int z = 1; z <= T; z++){
cin >> n;
int m = 0;
for(int x = 0; x < n; x++){
int s, e, l;
cin >> s >> e >> l;
stones[x] = {s, e, l};
m += s;
}
sort(stones, stones + n);
memset(dp, -0x3f, sizeof dp);
dp[0] = 0;
for(int i = 0; i < n; i++){
int s = stones[i].s, e = stones[i].e, l = stones[i].l;
for(int j = m; j >= s; j--){
dp[j] = max(dp[j], dp[j - s] + e - (j - s) * l);
}
}
int res = 0;
for(int i = 0; i <= m; i++) res = max(res, dp[i]);
printf("Case #%d: %d\n", z, res);
}
}
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】博客园社区专享云产品让利特惠,阿里云新客6.5折上折
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 微软正式发布.NET 10 Preview 1:开启下一代开发框架新篇章
· 没有源码,如何修改代码逻辑?
· PowerShell开发游戏 · 打蜜蜂
· 在鹅厂做java开发是什么体验
· WPF到Web的无缝过渡:英雄联盟客户端的OpenSilver迁移实战
2018-04-18 红黑树