Hei!

你是不是很威

13 垃圾邮件分类2

1.读取

2.数据预处理

3.数据划分—训练集和测试集数据划分

from sklearn.model_selection import train_test_split

x_train,x_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=0, stratify=y_train)

4.文本特征提取

sklearn.feature_extraction.text.CountVectorizer

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html?highlight=sklearn%20feature_extraction%20text%20tfidfvectorizer

sklearn.feature_extraction.text.TfidfVectorizer

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html?highlight=sklearn%20feature_extraction%20text%20tfidfvectorizer#sklearn.feature_extraction.text.TfidfVectorizer

from sklearn.feature_extraction.text import TfidfVectorizer

tfidf2 = TfidfVectorizer()

观察邮件与向量的关系

向量还原为邮件

4.模型选择

from sklearn.naive_bayes import GaussianNB

from sklearn.naive_bayes import MultinomialNB

说明为什么选择这个模型?

5.模型评价:混淆矩阵,分类报告

from sklearn.metrics import confusion_matrix

confusion_matrix = confusion_matrix(y_test, y_predict)

说明混淆矩阵的含义

from sklearn.metrics import classification_report

说明准确率、精确率、召回率、F值分别代表的意义 

 

6.比较与总结

如果用CountVectorizer进行文本特征生成,与TfidfVectorizer相比,效果如何?

 

答:整体代码如下

import nltk
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
import csv
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
import numpy as np
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import confusion_matrix, classification_report

#数据处理
def preprocessing(text):
tokens = []
for sent in nltk.sent_tokenize(text): # 将每一封邮件内容分成句子
for word in nltk.word_tokenize(sent): # 对句子进性单词分割
tokens.append(word) #将单词结果放到列表


stops = stopwords.words("english") #加载相应停用词
tokens = [token for token in tokens if token not in stops] # 去除停用词

# 词性标注
nltk.pos_tag(tokens)

# 词性还原
lemmatizer = WordNetLemmatizer() # 定义还原对象
tokens = [lemmatizer.lemmatize(token, pos='n') for token in tokens] # 名词
tokens = [lemmatizer.lemmatize(token, pos='v') for token in tokens] # 动词
tokens = [lemmatizer.lemmatize(token, pos='a') for token in tokens] # 形容词
preprocessed_text = ' '.join(tokens)
return preprocessed_text # 返回处理结果

file_math = './SMSSpamCollection.csv'
sms = open(file_math, 'r', encoding='utf-8') # 数据读取
sms_data = []
sms_label = []
csv_reader = csv.reader(sms, delimiter='\t')
for line in csv_reader: # 预处理
sms_label.append(line[0])
sms_data.append(preprocessing(line[1]))


#划分训练测试集
x_train, x_test, y_train, y_test = train_test_split(sms_data, sms_label, test_size=0.2, random_state=0, stratify= sms_label)

#文本特征提取
tfidf = TfidfVectorizer()
X_train = tfidf.fit_transform(x_train) # X_train用fit_transform生成词汇表
X_test = tfidf.transform(x_test) # X_test要与X_train词汇表相同,因此在X_train进行


#向量还原为邮件
s = X_train.toarray()[0]
print("第一封邮件向量表示为:", s)
# 该函数输入一个矩阵,返回扁平化后矩阵中非零元素的位置(index)
a = np.flatnonzero(X_train.toarray()[0]) # 非零元素的位置(index)
print("非零元素的位置:", a)
print("向量的非零元素的值:", s[a])
b = tfidf.vocabulary_ # 词汇表
key_list = []
for key, value in b.items():
if value in a:
key_list.append(key) # key非0元素对应的单词
print("向量非零元素对应的单词:", key_list)
print("向量化之前的邮件:", x_train[0])



# 模型选择(根据数据特点选择多项式分布)

mnb = MultinomialNB()
mnb.fit(X_train, y_train)
mnb_pre = mnb.predict(X_test)
print("总数:", len(y_test))
print("预测正确数:", (mnb_pre == y_test).sum())

# 模型评价:混淆矩阵,分类报告:
conf_matrix = confusion_matrix(y_test, mnb_pre)
print("=====================================================")
print("混淆矩阵:\n", conf_matrix)
c = classification_report(y_test, mnb_pre)
print("=====================================================")
print("分类报告:\n", c)
print("模型准确率:", (conf_matrix[0][0] + conf_matrix[1][1]) / np.sum(conf_matrix))

结果:

 

 

 

 

模型选择原因:在本次的实验中,垃圾邮件分类的特征是单词频率等,单词出现是随机的不成正态分布,不采用高斯,采用分布式是比较适合的。

 

准确率、精确率、召回率、F值分别代表的意义 :

 

 

 

 

CountVectorize与TfidfVectorizer的比较:

  CountVectorizer:只考虑词汇在文本中出现的频率。

  TfidfVectorizer:除了考量某词汇在本文本中出现的频率,还关注包含这个词的其他文本的数量,能够削减高频没有意义的词汇出现带来的影响,挖掘更有意义的特征。

  CountVectorizer与TfidfVectorizer相比,对于负类的预测更加准确,而正类的预测则稍逊色。但总体预测正确率也比TfidfVectorizer稍高,相比之下似乎CountVectorizer更适合进行预测。

posted @ 2020-05-25 09:45  INacl  阅读(228)  评论(0编辑  收藏  举报