每日一题 - 剑指 Offer 38. 字符串的排列

题目信息

  • 时间: 2019-06-29

  • 题目链接:Leetcode

  • tag:字符串 深度优先搜索 回溯法

  • 难易程度:中等

  • 题目描述:

    输入一个字符串,打印出该字符串中字符的所有排列。

    你可以以任意顺序返回这个字符串数组,但里面不能有重复元素。

示例:

输入:s = "abc"
输出:["abc","acb","bac","bca","cab","cba"]

提示

1 <= s.length() <= 8

解题思路

本题难点

对于一个长度为 n 的字符串(假设字符互不重复),其排列共有 n×(n−1)×(n−2)…×2×1 种方案。要求返回的结果又不能有重复元素。

回溯法 :一种通过探索所有可能的候选解来找出所有的解的算法。如果候选解被确认不是一个解的话(或者至少不是最后一个解),回溯算法会通过在上一步进行一些变化抛弃该解,即回溯并且再次尝试。

具体思路

这个问题可以看作有 n 个排列成一行的空格,我们需要从左往右依此填入题目给定的 n 个字符,每个字符只能使用一次。

定义chars[]为输入字符串的字符数组,递归函数 backtracking表示从左往右填到第 i 个位置,当前字符串排列为 s。 那么整个递归函数分为两个情况:

  • 如果 s.length()==chars.length,说明我们已经填完了 n 个位置(注意下标从 0 开始),找到了一个可行的解,我们将 s 放入答案数组中,递归结束。
  • 如果 s.length()<chars.length,我们要考虑这第 i 个位置我们要填哪个字符。根据题目要求我们肯定不能填已经填过的字符,因此很容易想到的一个处理手段是我们定义一个标记数组 hasUsed[] 来标记已经填过的数,那么在填第 i 个数的时候我们遍历题目给定的 n 个字符。
  • 如果这个数没有被标记过,我们就尝试填入,并将其标记,继续尝试填下一个位置,即调用函数backtrack。搜索回溯的时候要撤销这一个位置填的数以及标记,并继续尝试其他没被标记过的数。

在一定会产生重复结果集的地方剪枝。

代码

class Solution {

    List<String> ret = new ArrayList<>();

    public String[] permutation(String s) {
        if(s.length() == 0){
            return null;
        }
      // 转换成字符数组
        char[] chars = s.toCharArray();
      // 排序是为了去重方便
        Arrays.sort(chars);
      // 由于操作的都是字符,使用 StringBuilder
      	StringBuilder path = new StringBuilder();
      //标记数组。通过标记才能让递归后的代码知道之前用过哪些数据,就可以舍去这些数字(剪枝)。
      	boolean[] used = new boolean[chars.length];
      // 回溯法
        backtracking(chars,used,path);
      // 记得转成字符串数组
        return ret.toArray(new String[ret.size()]);
    }

    void backtracking(char[] chars,boolean[] hasUsed,StringBuilder s){
      // 恰好生成了新的字符对象
        if(s.length() == chars.length){
            ret.add(s.toString());
            return;
        }
        for(int i = 0; i < chars.length;i++){
            if(hasUsed[i]){
                continue;
            }
          //去重,写 !hasUsed[i - 1] 是因为 chars[i - 1] 在深度优先遍历的过程中刚刚被撤销选择
            if(i != 0 && chars[i] == chars[i -1] && !hasUsed[i - 1]){
                continue;
            }
          //当前字符是否使用
            hasUsed[i] = true;
          //将当前字符添加到StringBuilder中
            s.append(chars[i]);
          //深度优先搜索
            backtracking(chars,hasUsed,s);
          // 注意:这里是状态重置,是从深层结点回到浅层结点的过程,代码在形式上和递归之前是对称的
          // 递归完成以后,需要撤销选择,递归方法执行之前做了什么,递归方法执行以后就需要做相应的逆向操作
            s.deleteCharAt(s.length() -1);
            hasUsed[i] = false;
        }
    }
}

复杂度分析:

  • 时间复杂度 O(N!) : N 为字符串 s 的长度;时间复杂度和字符串排列的方案数成线性关系,方案数为 N×(N−1)×(N−2)…×2×1 ,因此复杂度为 O(N!) 。
  • 空间复杂度 O(N) : 其中 n 为序列的长度。除答案数组以外,递归函数在递归过程中需要为每一层递归函数分配栈空间,所以这里需要额外的空间且该空间取决于递归的深度,这里可知递归调用深度为 O(n)。

其他优秀解答

解题思路

  • 排列方案的生成方法:根据字符串排列的特点,考虑深度优先搜索所有排列方案。即通过字符交换,先固定第 1 位字符( n 种情况)、再固定第 2 位字符( n−1 种情况)、... 、最后固定第 n 位字符( 1 种情况)。

  • 重复方案与剪枝

    当字符串存在重复字符时,排列方案中也存在重复方案。为排除重复方案,需在固定某位字符时,保证 “每种字符只在此位固定一次” ,即遇到重复字符时不交换,直接跳过。从 DFS 角度看,此操作称为 “剪枝” 。

代码

public class Exam38_permutation {
    List<String> list = new ArrayList<>();
    //为了让递归函数添加结果方便,定义到函数之外,这样无需带到递归函数的参数列表中
    char[] c;
    //同;但是其赋值依赖c,定义声明分开
    public String[] permutation(String s) {
        c = s.toCharArray();
        //从第一层开始递归
        dfs(0);
        return list.toArray(new String[list.size()]);
        //将字符串数组ArrayList转化为String类型数组
    }

    private void dfs(int x) {
        //当递归函数到达第三层,就返回,因为此时第二第三个位置已经发生了交换
        if (x == c.length - 1) {
            list.add(String.valueOf(c));//将字符数组转换为字符串
            return;
        }
        //为了防止同一层递归出现重复元素
        HashSet<Character> set = new HashSet<>();
        //这里就很巧妙了,第一层可以是a,b,c那么就有三种情况,这里i = x,正巧dfs(0),正好i = 0开始
        // 当第二层只有两种情况,dfs(1)i = 1开始
        for (int i = x; i < c.length; i++){
            //发生剪枝,当包含这个元素的时候,直接跳过
            if (set.contains(c[i])){
                continue;
            }
            set.add(c[i]);
            //交换元素,这里很是巧妙,当在第二层dfs(1),x = 1,那么i = 1或者 2, 要不是交换1和1,要不交换1和2
            swap(i,x);
            //进入下一层递归
            dfs(x + 1);
            //返回时交换回来,这样保证到达第1层的时候,一直都是abc。这里捋顺一下,开始一直都是abc,那么第一位置总共就3个位置
            //分别是a与a交换,这个就相当于 x = 0, i = 0;
            //     a与b交换            x = 0, i = 1;
            //     a与c交换            x = 0, i = 2;
            //就相当于上图中开始的三条路径
            //第一个元素固定后,每个引出两条路径,
            //     b与b交换            x = 1, i = 1;
            //     b与c交换            x = 1, i = 2;
            //所以,结合上图,在每条路径上标注上i的值,就会非常容易好理解了
            swap(i,x);
        }
    }

    private void swap(int i, int x) {
        char temp = c[i];
        c[i] = c[x];
        c[x] = temp;
    }
}
posted @ 2020-07-01 12:57  小锵同学、  阅读(128)  评论(0编辑  收藏  举报