最短路径算法-dijkstra

 首先dijkstra是一个人,一位计算机上古时期的先驱;而dijkstra是他用来向观众解释什么计算机想到的一个算法,如何计算两个地点的最短距离;当然这个最短距离,是有一个前提的,首先你要有一个已知各个点之间距离的路网;

比如这个图,我们如何去寻找A点到E点的最短距离?显然,正常人的直觉就是“这不是很简单,我都算下试试,比较一下不就知道了!”。但是这里只有四个顶点,倘若,除了这四个顶点外,额外还有有100个顶点的路网,又如何找到两个点的最短距离呢?这个时候,也许就要好好想想 “首先我要一个笔记本,一个笔,看下哪些点能到我的目的地E点,我可以给这些点起个名字,就叫‘nearByEPoints’,然后,我只需要知道,这些‘nearByEPoints’点到起点A的最短路径,然后加上末端的一段路径距离,比较一下就能知道那个路径是最短路径了;然后问题就变成了,如何找到A点到nearByEPoints”点的最短路径了,可以想见,只要我们不怕麻烦肯定能找到A到E的最短路径的;”
 从刚刚的思路中,我们可以知道,我们可以使用递归算法来实现这个算法。
dijkstra算法可视化




/**
 * @program: SpringBoot_Dubbo_Example
 * @description: 计算主体
 * @author: wangJun
 * @create: 2019-10-22 16:07
 **/
public class DPQ {
    private LinkedList<Line> linesNeedToCalculate;


    public DPQ(LinkedList<Line> linesNeedToCalculate) {
        this.linesNeedToCalculate = linesNeedToCalculate;
    }


    /**
     * 这里递归计算的缺点之一是,可能存在重复计算,这里使用了shortestMap来缓存以及计算过的节点
     * @param startPoint
     * @param destPoint
     * @param lines
     * @param shortestMap
     * @return
     */
    long getShortestDistance(long startPoint, long destPoint, LinkedList<Line> lines, HashMap<Long, Long> shortestMap){
        if (destPoint == startPoint){
            return 0;
        }
        if (shortestMap.get(destPoint) != null){
            return shortestMap.get(destPoint);
        }
        Iterator<Line> iterator = lines.iterator();
        long shortestDistance = -1;
        while (iterator.hasNext()){
            Line currentLine = iterator.next();
            if (currentLine.getToPoint() == destPoint){
                iterator.remove();
                LinkedList<Line> remainLines = new LinkedList<>();
                remainLines.addAll(lines);
                long beforeShortestDistance = getShortestDistance(startPoint, currentLine.getFromPoint(), remainLines, shortestMap);
                Long currentDistance = beforeShortestDistance + currentLine.getDistance();


                if (currentDistance < shortestDistance || shortestDistance == -1){
                    shortestDistance = currentDistance;
                }
            }
        }
        System.out.println(startPoint + "到" + destPoint + " 最短距离是" + shortestDistance);
        shortestMap.put(destPoint, shortestDistance);
        return shortestDistance;
    }

}




     我们可以知道任何递归都可以改造成循环方式,我用C++又实现了一版普通循环方式的dijkstra

Dijkstra.h

#ifndef DATASTRUCTURE_DIJKSTRA_H
#define DATASTRUCTURE_DIJKSTRA_H

#include <vector>
#include <list>
#include <utility>

using namespace std;
class Dijkstra {
public:

    /**
     * 顶点个数
     */
    int v;

    
    /**
     * 一个二维数组,index1,index2是两个顶点,value是之间直接的距离,如果不相连接,就是INX_MAX
     */
    vector<int> *adj;


    Dijkstra(int vertexCount);



    /**
     * search入口
     * @param s
     * @param t
     * @return
     */
    list<int> search(int s, int t);

    /**
     * 获取下一次计算的起始点(最短的未settle的点)
     * @param settled 
     * @param shortest 
     * @return 
     */
    int getNextStart(bool settled[], int shortest[]);
};


#endif //DATASTRUCTURE_DIJKSTRA_H

Dijkstra.cpp


#include "Dijkstra.h"
#include <vector>
#include <list>
#include <cmath>

Dijkstra::Dijkstra(int vertexCount) {
    this->v = vertexCount;
    this->adj = new vector<int>[v];
}

list<int> Dijkstra::search(int s, int t) {
    list<int> result;
    if (s == t){
        result.push_front(s);
        return result;
    }


    bool settled[v];
    int pre[v];
    int shortest[v];

    //初始化字段
    for (int i = 0; i < v; ++i) {
        settled[i] = false;
        pre[i] = -1;
        shortest[i] = INT_MAX;
    }

    settled[s] = false;
    shortest[s] = 0;
    while(true){

        int thisStart = getNextStart(settled, shortest);

        if(thisStart == -1){
            //可连通的线路已经全部遍历完毕
            break;
        } else {
            settled[thisStart] = true;
        }

        vector<int> sides = adj[thisStart];
        for (int point = 0; point < v; ++point) {
            if (settled[point]){
                continue;
            }
            int length = sides.at(point);
            //s 和 point 相互连接,且不是自己连自己
            if (length != INT_MAX && thisStart != point){
                int newLength = shortest[thisStart] + length;
                if(shortest[point] > newLength){
                    shortest[point] = newLength;
                    pre[point] = thisStart;
                }
            }
        }

    }




    //如果s到t是可达的
    if (settled[t]){
        result.push_front(t);
        while(true){
            if(pre[t] != -1){
                result.push_front(pre[t]);
                t = pre[t];
            } else {
                break;
            }
        }
    }


    return result;
}


int Dijkstra::getNextStart(bool *settled, int *shortest) {
    int unsettledAndShortestIndex = -1;
    int unsettledAndShortestDistance = INT_MAX;
    for (int i = 0; i < v; ++i) {
        bool isSettle = settled[i];
        int distance = shortest[i];
        if (!isSettle && distance < unsettledAndShortestDistance){
            unsettledAndShortestIndex = i;
            unsettledAndShortestDistance = distance;
        }
    }
    return unsettledAndShortestIndex;
}


测试代码:DijkstraTest.cpp

#include "gtest/gtest.h"
#include "graph/Dijkstra.h"
#include <iostream>
#include <cmath>
#include <list>


using namespace std;

class DijkstraTestFixture: public ::testing::Test {
public:
    Dijkstra *dijkstra;
    virtual void SetUp(){
        int vertexCount = 5;
        dijkstra = new Dijkstra(vertexCount);
        dijkstra->adj = new vector<int>[vertexCount];
        dijkstra->adj[0] = {0,7, 5, INT_MAX, INT_MAX};
        dijkstra->adj[1] = {7,0, 4, 6, INT_MAX};
        dijkstra->adj[2] = {5,4, 0, INT_MAX, 1};
        dijkstra->adj[3] = {INT_MAX,6, INT_MAX, 0, INT_MAX};
        dijkstra->adj[4] = {INT_MAX,INT_MAX, 1, INT_MAX, 0};

    }

    virtual void TearDown(){
        delete dijkstra;

    }
};


TEST_F(DijkstraTestFixture, testBasic) {
    list<int> result = dijkstra->search(0, 4);
    list<int>::iterator it;
    for(it = result.begin(); it != result.end(); it++){
        cout << *it << endl;
    }
}

posted on 2021-01-05 11:40  mindSucker  阅读(97)  评论(0编辑  收藏  举报