POJ 1190 生日蛋糕(DFS)

生日蛋糕

Time Limit: 1000MS
Memory Limit: 10000KB
64bit IO Format: %I64d & %I64u

Submit Status

Description

7月17日是Mr.W的生日,ACM-THU为此要制作一个体积为Nπ的M层生日蛋糕,每层都是一个圆柱体。
设从下往上数第i(1 <= i <= M)层蛋糕是半径为Ri, 高度为Hi的圆柱。当i < M时,要求Ri > Ri+1且Hi > Hi+1。
由于要在蛋糕上抹奶油,为尽可能节约经费,我们希望蛋糕外表面(最下一层的下底面除外)的面积Q最小。
令Q = Sπ
请编程对给出的N和M,找出蛋糕的制作方案(适当的Ri和Hi的值),使S最小。
(除Q外,以上所有数据皆为正整数)

Input

有两行,第一行为N(N <= 10000),表示待制作的蛋糕的体积为Nπ;第二行为M(M <= 20),表示蛋糕的层数为M。

Output

仅一行,是一个正整数S(若无解则S = 0)。

Sample Input

100
2

Sample Output

68

Hint

圆柱公式
体积V = πR 2H
侧面积A' = 2πRH
底面积A = πR 2

题目简单翻译:

解题思路:

DFS,注意剪枝。最小的块的半径最小为1,高度也为1.

代码:

#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
const int inf = 0x3f3f3f3f;
int n,m;
int Ans;
int mins[22],minv[22];
void init()
{
    mins[0]=0;
    minv[0]=0;
    for(int i=1;i<=20;i++)
    {
        mins[i]=mins[i-1]+2*i*i;
        minv[i]=minv[i-1]+i*i*i;
    }
    return;
}
void dfs(int Now_Depth,int Now_Sum,int Now_Volume,int Now_Radius,int Now_Height)
{
    if(Now_Depth==0)
    {
        if(Now_Volume==n&&Now_Sum<Ans) Ans=Now_Sum;
        return;
    }
    if(Now_Volume+minv[Now_Depth-1]>n||Now_Sum+mins[Now_Depth-1]>Ans||2*(n-Now_Volume)/Now_Radius+Now_Sum>Ans) return;
    for(int i=Now_Radius-1;i>=Now_Depth;i--)
    {
        if(Now_Depth==m) Now_Sum=i*i;
        int Max_Height=min(Now_Height-1,(n-Now_Volume-minv[Now_Depth-1])/(i*i));
        for(int j=Max_Height;j>=Now_Depth;j--)
        {
            dfs(Now_Depth-1,Now_Sum+2*i*j,Now_Volume+i*i*j,i,j);
        }
    }
}
int main()
{
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        init();
        Ans=inf;
        dfs(m,0,0,n+1,n+1);
        if(Ans==inf) Ans=0;
        printf("%d\n",Ans);
    }
    return 0;
}

posted on 2015-07-06 20:43  活力典  阅读(217)  评论(0编辑  收藏  举报

导航