11 LL(1)文法的判断,递归下降分析程序
1. 文法 G(S):
(1)S -> AB
(2)A ->Da|ε
(3)B -> cC
(4)C -> aADC |ε
(5)D -> b|ε
验证文法 G(S)是不是 LL(1)文法?
Select(A -> Da) = First(Da) = {b,a}
Select(A -> ε) = (Follow(ε)-{ε})∪Follow(A) = {b,a,c,#}
Select(C -> aADC) = First(aADC) = {a}
Select(C -> ε) = (Follow(ε)-{ε})∪Follow(C) = {ε}
Select(D -> b) = First(b) = {b}
Select(D -> ε) = (Follow(ε)-{ε})∪Follow(D) = {a,#}
∵Select(A -> Da) ∩ Select(A -> ε) ≠ ∅
Select(C -> aADC) ∩ Select(C -> ε) = ∅
Select(D -> b) ∩ Select(D -> ε) = ∅
∴文法G(s)不是LL(1)文法。
2.文法消除左递归之后的表达式文法是否是LL(1)文法?
G(s)消除左递归后文法G‘(s):
E -> TE'
E' -> +TE'|ε
T -> FT'
T' -> *FT'|ε
F -> (E) | i
Select(E' -> +TE') = First(+TE') = {+}
Select(E' -> ε) = (First(ε)-{ε})∪Follow(E') = {),#}
Select(T' -> *FT') = First(*FT') = {*}
Select(T' -> ε) = (First(ε)-{ε})∪Follow(T') = {#,+,)}
Select(F -> (E)) = First((E)) = {(}
Select(F -> i ) = First(i) = {i}
∵Select(E' -> +TE') ∩ Select(E' -> ε) = ∅
Select(T' -> *FT') ∩ Select(T' -> ε) = ∅
Select(F -> (E)) ∩ Select(F -> i ) = ∅
∴ 文法G‘(s)是LL(1)文法。
3.接2,如果是LL(1)文法,写出它的递归下降语法分析程序代码。
void ParseE(){
switch(lookhead){
ParseT();
ParseE'();
break;
}
void PareseE'(){
switch(lookhead){
case +:
MatchToken(+);
ParseT();
ParseE'();
break;
case ),#:
MatchToken(#);
break;
default:
print("syntax error\n");
exit(0);
}
}
void ParseT(){
switch(lookhead){
case (,i:
ParseF();
ParseT'();
break;
default:
print("syntax error\n");
exit(0);
}
}
void ParseT'(){
switch(lookhead){
case *:
MatchToken(*);
ParseF();
ParseT'();
break;
case #:
MatchToken(#);
MatchToken(+);
MatchToken());
break;
default:
print("syntax error\n");
exit(0);
}
}
void ParseF(){
switch(lookhead){
case (:
MatchToken(();
ParseE();
MatchToken());
break;
case i:
MatchToken(i);
break;
default:
print("syntax error\n");
exit(0);
}
}
4.加上实验一的词法分析程序,形成可运行的语法分析程序,分析任意输入的符号串是不是合法的表达式。