算法题:146. LRU 缓存 时间击败89%空间击败98.75%(题目+思路+代码+注释)
题目
请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。
实现 LRUCache 类:
LRUCache(int capacity) 以 正整数 作为容量 capacity 初始化 LRU 缓存
int get(int key) 如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -1 。
void put(int key, int value) 如果关键字 key 已经存在,则变更其数据值 value ;如果不存在,则向缓存中插入该组 key-value 。如果插入操作导致关键字数量超过 capacity ,则应该 逐出 最久未使用的关键字。
函数 get 和 put 必须以 O(1) 的平均时间复杂度运行。
示例:
输入
[“LRUCache”, “put”, “put”, “get”, “put”, “get”, “put”, “get”, “get”, “get”]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
输出
[null, null, null, 1, null, -1, null, -1, 3, 4]
解释
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // 缓存是 {1=1}
lRUCache.put(2, 2); // 缓存是 {1=1, 2=2}
lRUCache.get(1); // 返回 1
lRUCache.put(3, 3); // 该操作会使得关键字 2 作废,缓存是 {1=1, 3=3}
lRUCache.get(2); // 返回 -1 (未找到)
lRUCache.put(4, 4); // 该操作会使得关键字 1 作废,缓存是 {4=4, 3=3}
lRUCache.get(1); // 返回 -1 (未找到)
lRUCache.get(3); // 返回 3
lRUCache.get(4); // 返回 4
提示:
1 <= capacity <= 3000
0 <= key <= 10000
0 <= value <= 105
最多调用 2 * 105 次 get 和 put
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/lru-cache
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
思路
LRU算法要实现O(1)级的时间复杂度则必须试用过哈希来快速查找,而LRU有容量,那么在缓存淘汰时则必须去删除某个节点,并且确定删除的是最近未使用的缓存,要实现最近未使用只能使用双向链表来实现,由哈希表指向链表节点,用来快速定位,使用时将节点剔除并移动到最后面,淘汰时剔除链表最前面的节点,因为每次使用或插入新的就会把相关节点挪到最后面去,这样就实现了O(1)的时间复杂度的LRU算法。
总之,利用链表添加删除的O(1)和哈希的O(1)查找能力实现整个时间复杂度O(1)的LRU算法
代码
- 提交的代码
import java.util.HashMap;
import java.util.Map;
public class LRUCache {
private Map<Integer, Node> map;
private Node first;
private Node last;
private int capacity;
public LRUCache(int capacity) {
this.capacity = capacity;
map = new HashMap<>(capacity);
}
private void add(Node node) {
node.pre = last;
last = node;
if (node.pre != null) {
node.pre.next = node;
}
if (first == null) {
first = last;
}
}
private Node poll() {
Node pop = first;
if (first == null) {
return null;
}
first = first.next;
if (first != null) {
first.pre = null;
}
if (first == pop) {
first = last = null;
}
return pop;
}
private void unlink(Node node) {
Node pre = node.pre;
Node next = node.next;
if (pre != null) {
pre.next = next;
} else {
first = next;
}
if (next != null) {
next.pre = pre;
} else {
last = pre;
}
if (first != null) {
first.pre = null;
}
if (last != null) {
last.next = null;
}
if (first == node) {
first = null;
}
if (last == node) {
last = null;
}
node.next = node.pre = null;
}
public int get(int key) {
Node node = map.get(key);
// 使用过
if (node != null) {
unlink(node);
add(node);
}
return node != null ? node.val : -1;
}
public void put(int key, int value) {
Node node = map.get(key);
if (node == null) {
if (capacity == map.size()) {
// 需要淘汰一个
Node pop = poll();
map.remove(pop.key);
}
// 放入新的
node = new Node(key, value);
map.put(key, node);
} else {
// 覆盖
node.val = value;
unlink(node);
}
add(node);
}
}
class Node {
int key;
int val;
Node pre;
Node next;
public Node(int key, int val) {
this.key = key;
this.val = val;
}
}
/**
* Your LRUCache object will be instantiated and called as such:
* LRUCache obj = new LRUCache(capacity);
* int param_1 = obj.get(key);
* obj.put(key,value);
*/
- 调试时用的代码
package leetcode.q146;
import org.junit.Test;
import java.util.HashMap;
import java.util.Map;
public class LRUCache {
private Map<Integer, Node> map;
private Node first;
private Node last;
private int capacity;
public LRUCache(int capacity) {
this.capacity = capacity;
map = new HashMap<>(capacity);
}
public static void main(String[] args) {
LRUCache lruCache = new LRUCache(2);
lruCache.put(1, 0);
lruCache.print();
lruCache.put(2, 2);
lruCache.print();
System.out.println(lruCache.get(1));
lruCache.print();
lruCache.put(3, 3);
System.out.println(lruCache.get(2));
lruCache.put(4, 4);
System.out.println(lruCache.get(1));
System.out.println(lruCache.get(3));
System.out.println(lruCache.get(4));
}
private void add(Node node) {
node.pre = last;
last = node;
if (node.pre != null) {
node.pre.next = node;
}
if (first == null) {
first = last;
}
System.out.println("添加" + node.val + "后");
print();
}
@Test
public void testAdd() {
print();
add(new Node(1, 1));
add(new Node(2, 2));
add(new Node(3, 3));
add(new Node(4, 4));
}
@Test
public void testPoll() {
print();
add(new Node(1, 1));
poll();
poll();
add(new Node(2, 2));
add(new Node(3, 3));
poll();
poll();
poll();
add(new Node(4, 4));
add(new Node(4, 4));
add(new Node(4, 4));
poll();
add(new Node(4, 4));
poll();
poll();
print();
}
private void print() {
Node p = first;
System.out.print("链表:");
while (p != null) {
if (p != first) {
System.out.print("->");
}
System.out.print(p.val);
p = p.next;
}
System.out.println();
}
private Node poll() {
Node pop = first;
if (first == null) {
System.out.println("弹出null");
return null;
}
first = first.next;
if (first != null) {
first.pre = null;
}
if (first == pop) {
first = last = null;
}
System.out.println("弹出" + pop.val);
return pop;
}
/**
* A A
* A B
* A B C
*
* @param node
*/
private void unlink(Node node) {
Node pre = node.pre;
Node next = node.next;
if (pre != null) {
pre.next = next;
} else {
first = next;
}
if (next != null) {
next.pre = pre;
} else {
last = pre;
}
if (first != null) {
first.pre = null;
}
if (last != null) {
last.next = null;
}
if (first == node) {
first = null;
}
if (last == node) {
last = null;
}
node.next = node.pre = null;
}
@Test
public void testUnlink() {
add(new Node(1, 1));
unlink(first);
print();
add(new Node(1, 1));
add(new Node(2, 2));
unlink(first);
print();
unlink(first);
print();
add(new Node(1, 1));
add(new Node(2, 2));
unlink(last);
print();
add(new Node(1, 1));
Node node = new Node(2, 2);
add(node);
add(new Node(3, 3));
unlink(node);
print();
}
public int get(int key) {
Node node = map.get(key);
// 使用过
if (node != null) {
unlink(node);
add(node);
}
return node != null ? node.val : -1;
}
public void put(int key, int value) {
Node node = map.get(key);
if (node == null) {
if (capacity == map.size()) {
// 需要淘汰一个
Node pop = poll();
map.remove(pop.key);
}
// 放入新的
node = new Node(key, value);
map.put(key, node);
} else {
// 覆盖
node.val = value;
unlink(node);
}
add(node);
}
}
class Node {
int key;
int val;
Node pre;
Node next;
public Node(int key, int val) {
this.key = key;
this.val = val;
}
}
简化版两头虚拟节点代码
添加了虚拟头尾节点后让你不用再考虑头尾为空、相同的这些问题了,非常nice
public class LRUCache {
private Map<Integer, Node> map;
// 虚拟头尾
private Node first = new Node(0, 0);
private Node last = new Node(0, 0);
private int capacity;
public LRUCache(int capacity) {
this.capacity = capacity;
map = new HashMap<>(capacity);
first.next = last;
last.pre = first;
}
private void add(Node node) {
Node pre = last.pre;
// 接节点左边的链接
pre.next = node;
node.pre = pre;
// 接节点右边的链接
node.next = last;
last.pre = node;
}
private void print() {
Node p = first.next;
System.out.print("链表:");
while (p != null && p != last) {
if (p != first) {
System.out.print("->");
}
System.out.print(p.val);
p = p.next;
}
System.out.println();
}
private Node poll() {
Node poll = first.next;
if (poll == last) {
return null;
}
unlink(poll);
return poll;
}
private void unlink(Node node) {
Node pre = node.pre;
Node next = node.next;
pre.next = next;
next.pre = pre;
node.next = node.pre = null;
}
public int get(int key) {
Node node = map.get(key);
// 使用过
if (node != null) {
unlink(node);
add(node);
}
return node != null ? node.val : -1;
}
public void put(int key, int value) {
Node node = map.get(key);
if (node == null) {
if (capacity == map.size()) {
// 需要淘汰一个
Node pop = poll();
map.remove(pop.key);
}
// 放入新的
node = new Node(key, value);
map.put(key, node);
} else {
// 覆盖
node.val = value;
unlink(node);
}
add(node);
}
}
class Node {
int key;
int val;
Node pre;
Node next;
public Node(int key, int val) {
this.key = key;
this.val = val;
}
}
本文来自博客园,作者:HumorChen99,转载请注明原文链接:https://www.cnblogs.com/HumorChen/p/18039473
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· Manus的开源复刻OpenManus初探
· AI 智能体引爆开源社区「GitHub 热点速览」
· 从HTTP原因短语缺失研究HTTP/2和HTTP/3的设计差异
· 三行代码完成国际化适配,妙~啊~