CodeForces834D DP + 线段树

http://codeforces.com/problemset/problem/834/D

 将一个长度为n的序列分为k段

使得总价值最大一段区间的价值表示为区间内不同数字的个数

n<=35000,k<=50

这题的dp是十分显然的,用dp[i][j]表示前i个数字分成j段的最大值

状态转移方程就是 dp[i][j] = max(dp[i - 1][k] + dis[k + 1][j] | (0 <= k <= j - 1)) 

但是乍一想可能是个O(knn)的算法,仔细一想果然是。

考虑线段树的优化。显然根据状态转移方程,线段树维护的是dp[i - 1][k] + dis[k + 1][j]的最大值

也就是对每一层都build一次线段树,然后以此查询更新,时间复杂度是O(knlnn),看着十分科学

其中一个难点在于对颜色种类的维护,dis这个35k * 35k的数组肯定是存不下的,仔细一想其实不需要什么花里胡哨的操作,用一个pre数组存储上一个这个颜色出现的地方,当遇到这个颜色的时候,在线段树pre[x] + 1,x的位置全部加上1,意在pre[x] + 1到x出现了这个颜色,种类++;

然后整个思路就出来了,对于每一层状态,用一个build更新上一层的dp[i - 1][k],dis在查询的过程中动态更新,这种听起来就很像正解的做法一般就是正解。

#include <map>
#include <set>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <sstream>
#include <iostream>
#include <algorithm>
#include <functional>
using namespace std;
const int MAXBUF=10000;char buf[MAXBUF],*ps=buf,*pe=buf+1;
inline bool isdigit(const char& n) {return (n>='0'&&n<='9');}
inline void rnext(){if(++ps==pe)pe=(ps=buf)+fread(buf,sizeof(char),sizeof(buf)/sizeof(char),stdin);}
template <class T> inline bool in(T &ans){
#ifdef VSCode
ans=0;T f=1;register char c;
do{c=getchar();if ('-'==c)f=-1;}while(!isdigit(c)&&c!=EOF);
if(c==EOF)return false;do{ans=(ans<<1)+(ans<<3)+c-48;
c=getchar();}while(isdigit(c)&&c!=EOF);ans*=f;return true;
#endif
#ifndef VSCode 
ans =0;T f=1;if(ps==pe)return false;do{rnext();if('-'==*ps)f=-1;} 
while(!isdigit(*ps)&&ps!=pe);if(ps==pe)return false;do{ans=(ans<<1)+(ans<<3)+*ps-48;
rnext();}while(isdigit(*ps)&&ps!=pe);ans*=f;return true;
#endif
}const int MAXOUT=10000;
char bufout[MAXOUT], outtmp[50],*pout = bufout, *pend = bufout+MAXOUT;
inline void write(){fwrite(bufout,sizeof(char),pout-bufout,stdout);pout = bufout;}
inline void out_char(char c){*(pout++)=c;if(pout==pend)write();}
inline void out_str(char *s){while(*s){*(pout++)=*(s++);if(pout==pend)write();}}
template <class T>inline void out_int(T x) {if(!x){out_char('0');return;}
if(x<0)x=-x,out_char('-');int len=0;while(x){outtmp[len++]=x%10+48;x/=10;}outtmp[len]=0;
for(int i=0,j=len-1;i<j;i++,j--) swap(outtmp[i],outtmp[j]);out_str(outtmp);}
template<typename T, typename... T2>
inline int in(T& value, T2&... value2) { in(value); return in(value2...); }
#define For(i, x, y) for(int i=x;i<=y;i++)  
#define _For(i, x, y) for(int i=x;i>=y;i--)
#define Mem(f, x) memset(f,x,sizeof(f))  
#define Sca(x) scanf("%d", &x)
#define Scl(x) scanf("%lld",&x);  
#define Pri(x) printf("%d\n", x)
#define Prl(x) printf("%lld\n",x);  
#define CLR(u) for(int i=0;i<=N;i++)u[i].clear();
#define LL long long
#define ULL unsigned long long  
#define mp make_pair
#define PII pair<int,int>
#define PIL pair<int,long long>
#define PLL pair<long long,long long>
#define pb push_back
#define fi first
#define se second 
#define Vec Point
typedef vector<int> VI;
const double eps = 1e-9;
const int maxn = 35010;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + 7; 
int N,M,tmp,K;
int a[maxn]; 
int dp[maxn][55]; //以这个结尾
int pre[maxn];
int display[maxn];
struct Tree{
    int l,r;
    int MAX,lazy;
}tree[maxn * 4];
void Pushdown(int t){
    if(tree[t].lazy){
        tree[t << 1].lazy += tree[t].lazy; tree[t << 1].MAX += tree[t].lazy;
        tree[t << 1 | 1].lazy +=  tree[t].lazy; tree[t << 1 | 1].MAX += tree[t].lazy;
        tree[t].lazy = 0;
    }
}
void Pushup(int t){
    tree[t].MAX = max(tree[t << 1].MAX,tree[t << 1 | 1].MAX);
}
void Build(int t,int l,int r,int flag){
    tree[t].l = l; tree[t].r = r;
    tree[t].lazy = 0;
    if(l == r){
        tree[t].MAX = dp[l - 1][flag];
        return;
    }
    int m = (l + r) >> 1;
    Build(t << 1,l,m,flag);
    Build(t << 1 | 1,m + 1,r,flag);
    Pushup(t);
}
void update(int t,int l,int r){
    if(l <= tree[t].l && tree[t].r <= r){
        tree[t].MAX++;
        tree[t].lazy++;
        return;
    }
    Pushdown(t);
    int m = (tree[t].l + tree[t].r) >> 1;
    if(r <= m) update(t << 1,l,r);
    else if(l > m) update(t << 1 | 1,l,r);
    else{
        update(t << 1,l,m);
        update(t << 1 | 1,m + 1,r);
    }
    Pushup(t);
}
int query(int t,int l,int r){
    if(l <= tree[t].l && tree[t].r <= r){
        return tree[t].MAX;
    }
    Pushdown(t);
    int m = (tree[t].l + tree[t].r) >> 1;
    if(r <= m){
        return query(t << 1,l,r);
    }else if(l > m){
        return query(t << 1 | 1,l,r);
    }else{
        return max(query(t << 1 | 1,m + 1,r),query(t << 1,l,m));
    }
}
int main()
{
    in(N,K);
    For(i,1,N) display[i] = 0;
    For(i,1,N){
        in(a[i]);
        pre[i] = display[a[i]];
        display[a[i]] = i;
    }
    For(i,1,K){        //dp[i][j] = max(dp[i - 1][k] + dis[k + 1][j]) (0 <= k <= j - 1));
        Build(1,1,N,i - 1);
        For(j,1,N){
            update(1,pre[j] + 1,j);
            dp[j][i] = query(1,1,j);
          //  cout << dp[j][i] << " ";
        }
    //    cout << endl;
    }
    Pri(dp[N][K]);
    #ifdef VSCode
    write();
    system("pause");
    #endif
    return 0;
}

 

posted @ 2018-08-19 09:05  Hugh_Locke  阅读(305)  评论(0编辑  收藏  举报