牛客多校第三场 A- PACM Team 背包/记忆路径

https://www.nowcoder.com/acm/contest/141#question

 

一眼背包,用四维dp记录在A,B,C,D条件限制下可以获得的最大知识点,但是题目要求输出路径,在输入中包含0这样的样例,原本的递归寻找路径变的不可行,就需要开五维dp记录在i组条件下ABCD的最大知识点,空间复杂度为36 ^ 5,测试可以通过,但本题有更加优秀的解法,就是在原本四维dp的条件下同时用状压记录已经选择的物品,输出的时候只要输出加入状压的物品即可。

#include <map>
#include <set>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <sstream>
#include <iostream>
#include <algorithm>
#include <functional>
#define For(i, x, y) for(int i=x; i<=y; i++)
#define _For(i, x, y) for(int i=x; i>=y; i--)
#define Mem(f, x) memset(f, x, sizeof(f))
#define Sca(x) scanf("%d", &x)
#define Scl(x) scanf("%lld",&x);
#define Pri(x) printf("%d\n", x)
#define Prl(x) printf("%lld\n",x);
#define CLR(u) for(int i = 0; i <= N ; i ++) u[i].clear();
#define LL long long
#define ULL unsigned long long
#define mp make_pair
#define PII pair<int,int>
#define PIL pair<int,long long>
#define PLL pair<long long,long long>
#define pb push_back
#define fi first
#define se second
using namespace std;
typedef vector<int> VI;
const double eps = 1e-9;
const int maxn = 40;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + 7;
inline int read()
{
    int now=0;register char c=getchar();
    for(;!isdigit(c);c=getchar());
    for(;isdigit(c);now=now*10+c-'0',c=getchar());
    return now;
}
int N,M;
struct DP{
    ULL c;
    int num;
}dp[maxn][maxn][maxn][maxn];;
struct group{
    int a,b,c,d,p;
}G[maxn];
int A,B,C,D;
VI P;
int main()
{
    N = read();
    For(i,1,N){
        G[i].a = read(); G[i].b = read();
        G[i].c = read(); G[i].d = read();
        Sca(G[i].p);
    }
    A = read(); B = read(); C = read(); D = read();
    Mem(dp,0);
    For(i,1,N){
        _For(a,A ,G[i].a){
            _For(b,B,G[i].b){
                _For(c,C,G[i].c){
                    _For(d,D,G[i].d){
                        if(dp[a][b][c][d].num < dp[a - G[i].a][b - G[i].b][c - G[i].c][d - G[i].d].num + G[i].p){
                            dp[a][b][c][d].num = dp[a - G[i].a][b - G[i].b][c - G[i].c][d - G[i].d].num + G[i].p;
                            dp[a][b][c][d].c = dp[a - G[i].a][b - G[i].b][c - G[i].c][d - G[i].d].c | (1ULL << i);
                        }
                        if(a && dp[a][b][c][d].num < dp[a - 1][b][c][d].num){
                            dp[a][b][c][d] = dp[a - 1][b][c][d];
                        }
                        if(b && dp[a][b][c][d].num < dp[a][b - 1][c][d].num){
                            dp[a][b][c][d]= dp[a][b - 1][c][d];
                        }
                        if(c && dp[a][b][c][d].num < dp[a][b][c - 1][d].num){
                            dp[a][b][c][d] = dp[a][b][c - 1][d];
                        }
                        if(d && dp[a][b][c][d].num < dp[a][b][c][d - 1].num){
                            dp[a][b][c][d]= dp[a][b][c][d - 1];
                        }  
                    }
                }
            }
        }
    }
    ULL t = dp[A][B][C][D].c;
    For(i,1,N){
        if(t & (1ULL << i)) P.push_back(i);
    }
    printf("%d\n",P.size());
    for(int i = 0 ; i < P.size(); i ++){
        printf("%d ",P[i] - 1);
    }
    return 0;
}

 

posted @ 2018-08-19 08:59  Hugh_Locke  阅读(148)  评论(0编辑  收藏  举报