CodeForces786B 线段树 + 最短路
给定n颗行星,q次处理,地球位置为s,求解在q次处理后,地球到每一颗行星的位置。
其中q有三种不同的操作:
输入v,u,wv,u,w,构建一条从vv到uu的代价为ww的路线
输入u,l,r,wu,l,r,w,构建一条从uu到区间[l,r][l,r]中任意一颗行星的代价为ww的路线
输入u,l,r,wu,l,r,w,构建区间[l,r]中任意一颗行星到uu的代价为ww的路线
建立两颗线段树,一颗记录操作2中其他点AOE到这些点的区间,一颗记录所有点单独到一个节点的路径,把线段树上的点单独作为一个节点来维护,偷了一个很好的图来表达
#include <map> #include <set> #include <cmath> #include <queue> #include <stack> #include <vector> #include <string> #include <cstdio> #include <cstdlib> #include <cstring> #include <sstream> #include <iostream> #include <algorithm> #include <functional> #define For(i, x, y) for(int i=x; i<=y; i++) #define Mem(f, x) memset(f, x, sizeof(f)) #define Sca(x) scanf("%d", &x) #define Pri(x) printf("%d\n", x) #define CLR(u) for(int i = 0; i <= N ; i ++) u[i].clear(); #define LL long long #define mp make_pair #define PI pair<int,int> #define PIL pair<int,long long> #define PLI pair<long long,int> #define pb push_back #define fi first #define se second using namespace std; typedef vector<int> VI; const int maxn = 1e5 + 10; const int maxm = 3e5 + 10; const LL INF = 1e18 + 10; const int mod = 1e9 + 7; inline int read() { int now=0;register char c=getchar(); for(;!isdigit(c);c=getchar()); for(;isdigit(c);now=now*10+c-'0',c=getchar()); return now; } struct Tree { int left,right; int lr,rr; }tree[maxm]; int N,M; int Q,S; int tot; vector<PIL> P[maxm]; LL dis[maxm]; bool vis[maxm]; int Build(int left,int right,int flag) { if(left == right) return left; int root = ++tot; tree[root].left = left; tree[root].right = right; int mid = (left + right) / 2; tree[root].lr = Build(left,mid,flag); tree[root].rr = Build(mid + 1,right,flag); if(flag){ P[root].pb(mp(tree[root].lr,0)); P[root].pb(mp(tree[root].rr,0)); }else{ P[tree[root].lr].pb(mp(root,0)); P[tree[root].rr].pb(mp(root,0)); } return root; } void update(int v,int l,int r,int root,int flag,LL w) { if(l == r){ if(flag) P[v].pb(mp(l,w)); else P[l].pb(mp(v,w)); return; } if(l <= tree[root].left && tree[root].right <= r) { if(flag) P[v].pb(mp(root,w)); else P[root].pb(mp(v,w)); return; } int mid = (tree[root].left + tree[root].right) >> 1; if(r <= mid) update(v,l,r,tree[root].lr,flag,w); else if(l > mid) update(v,l,r,tree[root].rr,flag,w); else{ update(v,l,mid,tree[root].lr,flag,w); update(v,mid + 1,r,tree[root].rr,flag,w); } } void Dijkstra(int start){ Mem(vis,0); for(int i = 1; i <= tot; i ++){ dis[i] = INF; } dis[start] = 0; priority_queue<PLI,vector<PLI>,greater<PLI>>Q; Q.push(mp(0,start)); while(!Q.empty()){ PLI u = Q.top(); Q.pop(); if(vis[u.se]) continue; vis[u.se] = 1; for(int j = 0 ; j < P[u.se].size(); j ++){ PIL v = P[u.se][j]; if(!vis[v.fi] && dis[v.fi] > dis[u.se] + v.se){ dis[v.fi] = dis[u.se] + v.se; Q.push(mp(dis[v.fi],v.fi)); } } } } int main() { N = read(); Q = read(); S = read(); tot = N; int L = Build(1,N,0); int R = Build(1,N,1); For(i,1,Q){ int op = read() , v = read(); LL w; if(op == 1){ int u = read(); scanf("%lld",&w); P[v].pb(mp(u,w)); }else if(op == 2){ int l = read(); int r = read(); scanf("%lld",&w); update(v,l,r,R,1,w); }else{ int l = read(); int r = read(); scanf("%lld",&w); update(v,l,r,L,0,w); } } /* For(i,N + 1,tot){ printf("%d : %d %d\n",i,tree[i].left,tree[i].right); } For(i,1,tot){ printf("%d : ",i); for(int j = 0 ; j < P[i].size(); j ++){ printf("%d ",P[i][j]); } printf("\n"); } */ Dijkstra(S); For(i,1,N){ if(dis[i] == INF) dis[i] = -1; printf("%lld ",dis[i]); } return 0; }