POJ2778 AC自动机 + 快速矩阵幂
http://poj.org/problem?id=2778
做法:利用AC自动机建矩阵之后进行N次矩阵乘
关于AC自动机配快速矩阵幂的理解:
1.题目限制10个字符串长度最多为10,那么建出的AC自动机的结点数至多为100
2.任意合法字符串必定通过nxt指针在AC自动机的结点之间转移
3.那么我们只要求出每次结点之间转移的数量,建立一个矩阵,就可以通过快速矩阵幂优化了
4.对于不合法的结点(病毒),将特定的转移次数设定为0即可。
5.注意不合法的结点除了插入的时候字典树上不合法的结点之外,所有fail指针指向不合法结点的及其后缀都是不合法结点,因为fail指针指向结点是该节点的后缀
#include <map> #include <set> #include <ctime> #include <cmath> #include <queue> #include <stack> #include <vector> #include <string> #include <bitset> #include <cstdio> #include <cstdlib> #include <cstring> #include <sstream> #include <iostream> #include <algorithm> #include <functional> using namespace std; #define For(i, x, y) for(int i=x;i<=y;i++) #define _For(i, x, y) for(int i=x;i>=y;i--) #define Mem(f, x) memset(f,x,sizeof(f)) #define Sca(x) scanf("%d", &x) #define Sca2(x,y) scanf("%d%d",&x,&y) #define Sca3(x,y,z) scanf("%d%d%d",&x,&y,&z) #define Scl(x) scanf("%lld",&x) #define Pri(x) printf("%d\n", x) #define Prl(x) printf("%lld\n",x) #define CLR(u) for(int i=0;i<=N;i++)u[i].clear(); #define LL long long #define ULL unsigned long long #define mp make_pair #define PII pair<int,int> #define PIL pair<int,long long> #define PLL pair<long long,long long> #define pb push_back #define fi first #define se second typedef vector<int> VI; int read(){int x = 0,f = 1;char c = getchar();while (c<'0' || c>'9'){if (c == '-') f = -1;c = getchar();} while (c >= '0'&&c <= '9'){x = x * 10 + c - '0';c = getchar();}return x*f;} const double PI = acos(-1.0); const double eps = 1e-9; const int maxn = 10010; const int INF = 0x3f3f3f3f; const int mod = 100000; int M,K; LL N; int nxt[maxn][4],fail[maxn],ed[maxn],root,tot; struct Mat{ LL a[102][102]; void init(){Mem(a,0);} friend Mat operator *(Mat a,Mat b){ Mat ans; ans.init(); for(int i = 0 ; i < tot; i ++){ for(int j = 0 ; j < tot; j ++){ for(int k = 0 ; k < tot; k ++){ ans.a[i][j] = (ans.a[i][j] + a.a[i][k] * b.a[k][j]) % mod; } } } return ans; } friend Mat operator ^(Mat a,LL t){ Mat ans = a; t--; while(t){ if(t & 1) ans = ans * a; a = a * a; t >>= 1; } return ans; } }base; int newnode(){ for(int i = 0 ; i < 4; i ++) nxt[tot][i] = -1; ed[tot++] = 0; return tot - 1; } void init(){ tot = 0; root = newnode(); base.init(); } int getid(char c){ if(c == 'A') return 0; if(c == 'C') return 1; if(c == 'T') return 2; return 3; } void insert(char *str){ int p = root; for(int i = 0;str[i]; i ++){ int id = getid(str[i]); if(nxt[p][id] == -1) nxt[p][id] = newnode(); p = nxt[p][id]; } ed[p] = 1; } void Build(){ queue<int>Q; fail[root] = root; for(int i = 0 ; i < 4; i ++){ if(~nxt[root][i]){ fail[nxt[root][i]] = root; Q.push(nxt[root][i]); }else{ nxt[root][i] = root; } } while(!Q.empty()){ int u = Q.front(); Q.pop(); for(int i = 0 ; i < 4; i ++){ if(~nxt[u][i]){ fail[nxt[u][i]] = nxt[fail[u]][i]; if(ed[nxt[fail[u]][i]]) ed[nxt[u][i]] = 1; Q.push(nxt[u][i]); }else{ nxt[u][i] = nxt[fail[u]][i]; } } } for(int i = 0 ; i < tot; i ++){ if(ed[i]) continue; for(int j = 0 ; j < 4; j ++){ if(!ed[nxt[i][j]]) base.a[i][nxt[i][j]]++; } } } int query(LL q){ int ans = 0; Mat t; t.init(); t.a[0][0] = 1; t = t * (base ^ q); for(int i = 0 ; i < tot; i ++){ for(int j = 0 ; j < tot; j ++) ans = (ans + t.a[i][j]) % mod; } return ans; } char str[maxn]; int main(){ Sca(M); Scl(N); init(); for(int i = 1; i <= M ; i ++){ scanf("%s",str); insert(str); } Build(); Pri(query(N)); return 0; }