数学模板

  1 #include<algorithm>
  2 #include<iostream>
  3 #include<cstdlib>
  4 #include<cstring>
  5 #include<cstdio>
  6 #include<string>
  7 #include<cmath>
  8 #include<ctime>
  9 #include<queue>
 10 #include<stack>
 11 #include<map>
 12 #include<set>
 13 #define rre(i,r,l) for(int i=(r);i>=(l);i--)
 14 #define re(i,l,r) for(int i=(l);i<=(r);i++)
 15 #define Clear(a,b) memset(a,b,sizeof(a))
 16 #define inout(x) printf("%d",(x))
 17 #define douin(x) scanf("%lf",&x)
 18 #define strin(x) scanf("%s",(x))
 19 #define LLin(x) scanf("%lld",&x)
 20 #define op operator
 21 #define CSC main
 22 typedef unsigned long long ULL;
 23 typedef const int cint;
 24 typedef long long LL;
 25 using namespace std;
 26 void inin(int &ret)
 27 {
 28     ret=0;int f=0;char ch=getchar();
 29     while(ch<'0'||ch>'9'){if(ch=='-')f=1;ch=getchar();}
 30     while(ch>='0'&&ch<='9')ret*=10,ret+=ch-'0',ch=getchar();
 31     ret=f?-ret:ret;
 32 }
 33 namespace C
 34 {
 35     int c[1010][1010];
 36     void js1(int n)//????¨¨y?? 
 37     {
 38         c[1][1]=1;
 39         re(i,1,n)
 40         {
 41             c[i][1]=i;
 42             re(j,2,i)c[i][j]=c[i-1][j-1]+c[i-1][j];
 43         }
 44     }
 45     void js2(int n,int k)//O(n)¦ÌY¨ª? 
 46     {
 47         c[n][1]=n;
 48         re(i,2,n)c[n][i]=c[n][i-1]*(n-i+1)/i;
 49     }
 50 }
 51 namespace prime
 52 {
 53     int prime[100010],prime_tot;
 54     bool bo[1000010];
 55     void shai(int limit)//??D?¨¦? 
 56     {
 57         re(i,2,limit)
 58         {
 59             if(!bo[i])prime[++prime_tot]=i;
 60             for(int j=1;j<=prime_tot&&i*prime[j]<=limit;j++)
 61             {
 62                 bo[i*prime[j]]=1;
 63                 if(i%prime[j]==0)break;
 64             }
 65         }
 66     }
 67     bool pd(int x)//??¨ºy?D?¡§ 
 68     {
 69         shai(sqrt(x)+1);
 70         re(i,1,prime_tot)if(x%prime[i]==0)return 0;
 71         return 1;
 72     }
 73 }
 74 namespace nt
 75 {
 76     LL gcd(LL a,LL b){LL c;while(a%b)c=a%b,a=b,b=c;return b;}
 77     void exgcd(LL a,LL b,LL &d,LL &x,LL &y)//¨¤??1?¡¤??¨¤?¦Ì? 
 78     {
 79         if(!b){d=a;x=1,y=0;}
 80         else exgcd(b,a%b,d,y,x),y-=x*(a/b);
 81     }
 82     LL qpow(LL a,LL b,LL mod)//?¨¬?¨´?Y 
 83     {
 84         a%=mod;LL ret=1;
 85         while(b)
 86         {
 87             if(b&1)ret=ret*a%mod;
 88             b>>=1;
 89             a=a*a%mod;
 90         }
 91         return ret;
 92     }
 93     LL PHI(LL x)
 94     {
 95         LL ret=x;
 96         for(LL i=2;i*i<=x;i++)if(x%i==0)
 97         {
 98             ret=ret-ret/i;
 99             while(x%i==0)x/=i;
100         }
101         if(x>1)
102         ret=ret-ret/x;
103         return ret;
104     }
105     int phi[1000010],prime[1000010],tot;
106     bool a[1000010];
107     void shai(int limit)
108     {
109         phi[1]=1;
110         re(i,2,limit)
111         {
112             if(!a[i])prime[++tot]=i;
113             for(int j=1;j<=tot&&i*prime[j]<=limit;j++)
114             {
115                 a[i*prime[j]]=1;
116                 if(i%prime[j]==0)
117                 {
118                     phi[i*prime[j]]=phi[i]*prime[j];
119                     break;
120                 }
121                 else phi[i*prime[j]]=phi[i]*(prime[j]-1);
122             }
123         }
124     }
125     LL inv1(LL a,LL n)//???a(exgcd) 
126     {
127         LL d,x,y;
128         exgcd(a,n,d,x,y);
129         return d==1?(x+n)%n:-1;
130     }
131     LL inv2(LL a,LL n)//???a(¡¤??¨ªD??¡§¨¤¨ª) 
132     {
133         if(gcd(a,n)!=1)return -1;
134         LL zhi=PHI(n);
135         return qpow(a,zhi-1,n);
136     }
137     LL inv[1000010];
138     void getinv(LL mod)
139     {
140         inv[1]=1;
141         re(i,2,1000000)inv[i]=(mod-mod/i)*inv[mod%i]%mod;
142     }
143     //x=a[i](mod m[i])(1<=i<=n)
144     LL china(int n,int *a,int *m)//?D1¨²¨º¡ê¨®¨¤?¡§¨¤¨ª 
145     {
146         LL M=1,d,y,x=0;
147         re(i,1,n)M*=m[i];
148         re(i,1,n)
149         {
150             LL w=M/m[i];
151             exgcd(m[i],w,d,d,y);
152             x=(x+y*w*a[i])%M;
153         }
154         return (x+M)%M;
155     }
156     //?a?¡ê¡¤?3¨¬a^x=b(mod n),n?a?¨º¨ºy
157     int log_mod(int a,int b,int n)//BSGS
158     {
159         int m,v,e=1;
160         m=(int)sqrt(n+1);
161         v=inv2(qpow(a,m,n),n);
162         map<int,int>x;
163         x[1]=0;
164         re(i,1,m-1)
165         {
166             e=e*a%n;
167             if(!x.count(e))x[e]=i;
168         }
169         re(i,0,m-1)
170         {
171             if(x.count(b))return i*m+x[b];
172             b=b*v%n;
173         }
174         return -1;
175     }
176     int prime_tot,mu[100010];
177     bool bo[100010];
178     void get_mu(int limit)//?a¡À¨¨?¨²?1o¡¥¨ºy 
179     {
180         mu[1]=1;
181         re(i,2,limit)
182         {
183             if(!bo[i])prime[++prime_tot]=i,mu[i]=-1;
184             for(int j=1;j<=prime_tot&&i*prime[j]<=limit;j++)
185             {
186                 bo[i*prime[j]]=1;
187                 if(i%prime[j])mu[i*prime[j]]=-mu[i];
188                 else {mu[i*prime[j]]=0;break;}
189             }
190         }
191     }
192 }
193 namespace Matrix
194 {
195     struct mat
196     {
197         int a[111][111],r,c;
198         void clear(int rr,int cc,int x)
199         {
200             r=rr,c=cc;
201             re(i,1,r)re(j,1,c)if(i==j)a[i][j]=x;
202             else a[i][j]=0;
203         }
204         int* op [] (int x){return x[a];}
205         mat op + (mat &rhs)
206         {
207             mat ret=*this;
208             re(i,1,r)re(j,1,c)ret[i][j]+=rhs[i][j];
209             return ret;
210         }
211         mat op - (mat &rhs)
212         {
213             mat ret=*this;
214             re(i,1,r)re(j,1,c)ret[i][j]-=rhs[i][j];
215             return ret;
216         }
217         mat op * (int &rhs)
218         {
219             mat ret=*this;
220             re(i,1,r)re(j,1,c)ret[i][j]*=rhs;
221             return ret;
222         }
223         mat op / (int &rhs)
224         {
225             mat ret=*this;
226             re(i,1,r)re(j,1,c)ret[i][j]/=rhs;
227             return ret;
228         }
229         mat op * (mat &rhs)
230         {
231             mat ret;ret.clear(r,rhs.c,0);
232             re(i,1,r)re(j,1,rhs.c)re(k,1,c)
233                 ret[i][j]+=a[i][k]*rhs[k][j];
234             return ret;
235         }
236         mat qpow(int n)
237         {
238             mat ret,temp=*this;ret.clear(r,c,1);
239             while(n)
240             {
241                 if(n&1)ret=ret*temp;
242                 n>>=1;
243                 temp=temp*temp;
244             }
245             return ret;
246         }
247     };
248 }
249 namespace gauss
250 {
251     const double eps=1e-8;
252     int n;
253     double a[111][111],x[111];
254     void xy1()
255     {
256         re(i,1,n)
257         {
258             if(abs(a[i][i])<eps)
259             re(j,i+1,n)if(abs(a[j][i])>eps)
260             { 
261                 re(k,i,n+1)swap(a[j][k],a[i][k]);
262                 break; 
263             } 
264             re(j,i+1,n)
265             {
266                 if(abs(a[j][i])<eps)continue;
267                 double bi=a[i][i]/a[j][i];
268                 re(k,i,n+1)a[j][k]*=bi;
269                 re(k,i,n+1)a[j][k]-=a[i][k];
270             }
271         }
272         rre(i,n,1)
273         {
274             x[i]=a[i][n+1]/a[i][i];
275             rre(j,i-1,1)a[j][n+1]-=a[j][i]*x[i],a[j][i]=0;
276         }
277     }
278     LL fu[111],ans[111],aa[111][111],mod;
279     void xy2()
280     {
281         re(i,0,n-1)
282             re(j,i+1,n-1)
283             {
284                 LL xia=aa[j][i],shang=aa[i][i];
285                 re(k,i,n)
286                 {
287                     fu[k]=aa[i][k]*xia%mod;
288                     aa[j][k]=aa[j][k]*shang%mod;
289                     aa[j][k]=((aa[j][k]-fu[k])%mod+mod)%mod;
290                 }
291             }
292         rre(i,n-1,0)
293         {
294             LL d,x,y;
295             using namespace nt;
296             exgcd(aa[i][i],mod,d,x,y);
297             aa[i][n]=aa[i][n]*x%mod,aa[i][i]=1;
298             rre(j,i-1,0)(aa[j][n]-=aa[j][i]*aa[i][n]%mod)%=mod,aa[j][i]=0;
299         }
300     }
301 }
302 int main()
303 {
304     return 0;
305 }

 

posted @ 2016-03-28 22:36  HugeGun  阅读(333)  评论(0编辑  收藏  举报