洛谷P3886 [JLOI2009]神秘的生物(插头dp)
洛谷P3886 [JLOI2009]神秘的生物(插头dp)
题目大意
求带权正方形棋盘中最大权联通块
数据范围
\[1 \le n \le 9
\]
解题思路
自己做出来的第一道插头 dp,不过很简单就是了
由于这道题维护的是连通性,所以要用最小表示法记录一下每个点所在的联通块编号,然后就是轮廓线保留 n 个格子即可,因为插头处只用看看左边有没有块
那么就分为两种情况了,一种是不放插头,一种是放一个插头
不放插头要看看是不是会导致图不连通,放插头要将左和上的两个格子的联通块合并
代码
const int N = 5050;
const int P = 3592;
int h[N], ne[N], st[2][N], tot[2], val[2][N], nw, pr;
void insert(int bit, int num) {
// printf ("%d %d\n", bit, num);
int x = bit % P + 1;
for (int i = h[x]; i; i = ne[i])
if (st[nw][i] == bit) return Mx(val[nw][i], num);
ne[++tot[nw]] = h[x], st[nw][h[x] = tot[nw]] = bit, val[nw][tot[nw]] = num;
}
int vis[9], ans = -1e6, n;
int reb(int bit) {
int now = 0, mx = 0;
memset(vis, 0, sizeof(vis));
for (int i = 0;i < n; i++) {
int p = bit >> (i * 3) & 7;
if (!p) continue;
if (!vis[p]) vis[p] = ++mx;
now |= vis[p] << (i * 3);
}
return now;
}
void update(int now, int val) {
for (int l = 0;l < n; l++)
if ((now >> (l * 3) & 7) > 1) return;
Mx(ans, val);
}
int a[50][50];
int main() {
read(n);
for (int i = 1;i <= n; i++)
for (int j = 1;j <= n; j++)
read(a[i][j]), Mx(ans, a[i][j]);
if (ans <= 0) return write(ans), 0;
insert(0, 0);
for (int i = 1;i <= n; i++) {
for (int j = 1;j <= n; j++) {
pr = nw, nw = nw ^ 1, tot[nw] = 0;
memset(h, 0, sizeof(h));
for (int k = 1;k <= tot[pr]; k++) {
int now = st[pr][k], V = val[pr][k];
int b1 = (j == 1) ? 0 : now >> ((j - 2) * 3) & 7;
int b2 = now >> ((j - 1) * 3) & 7;
update(now, V);
int cc = 0;
for (int l = 0;l < n; l++) {
int pp = now >> (l * 3) & 7;
if (pp == b2) cc++;
}
if (cc > 1 || b2 == 0) insert(now ^ (b2 << ((j-1) * 3)), V);
for (int l = 0;l < n; l++) {
int pp = now >> (l * 3) & 7;
if (pp == 0) continue;
if (pp == b1 || pp == b2)
now ^= (7 ^ pp) << (l * 3);
}
if (b2 == 0) now |= 7 << ((j-1) * 3);
insert(reb(now), V + a[i][j]);
}
}
}
for (int i = 1;i <= tot[nw]; i++)
update(st[nw][i], val[nw][i]);
write(ans);
return 0;
}