[JSOI2015]染色问题
一道比较简单的容斥题(?
可以容斥一下, 设\(i, j ,k\)分别代表\(i\)行有颜色, \(j\)行有颜色, 出现\(k\)种颜色的方案数
\[ans = \sum_{i=0}^n\sum_{j=0}^m\sum_{k=0}^c(-1)^{(i+j+k+n+m+c)}C_n^iC_m^jC_c^k(k+1)^{(n*m)}
\]
k+1是因为一个格子可以不填颜色, 反手一个预处理组合数, O(n^3)稳过
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
using namespace std;
const int P = 1e9+7;
const int N = 505;
ll C[N][N], fpw[N*N];
int n, m, c;
ll ans;
int main() {
cin >> n >> m >> c;
fpw[0] = C[0][0] = 1;
for (int i = 1;i <= 400; i++) {
C[i][0] = 1;
for (int j = 1;j <= i; j++) {
C[i][j] = C[i-1][j] + C[i-1][j-1];
if (C[i][j] >= P) C[i][j] -= P;
}
}
int p = (n ^ m ^ c) & 1;
for (int k = 0;k <= c; k++) {
for (int i = 1;i <= n * m; i++) fpw[i] = fpw[i-1] * (k+1) % P;
for (int i = 0;i <= n; i++) {
for (int j = 0;j <= m; j++) {
ll res = C[n][i] * C[m][j] % P * C[c][k] % P * fpw[i*j] % P;
if (((i ^ j ^ k) & 1) ^ p) ans -= res;
else ans += res;
}
}
}
cout << (ans % P + P) % P << endl;
return 0;
}