LCIS 最长公共上升子序列

之前求过LIS和LCS,这次求两者的综合问题。那么就需要用到这两个问题的思想。

首先,用dp[i][j]表示str1和str2分别以i和j结尾的LCIS,那么对于str1[i] == str2[j]的时候,就要在1~j-1之间找到最优解,就是满足条件dp当中最大的一个,这个就是LIS的思想。如果不等的时候顺便更新一下小于str1[i]的dp最大的str2[j],这样的话在更新str1[i] == str2[j] 的时候就用O(1)的时间就能更新了。

当然,如果光求LCIS的长度的话,可以省略掉一维的空间,但是时间还是O(nm)

HDU 1423

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

const int maxn =550;
int s1[maxn], s2[maxn];
int dp[maxn];
int LCIS(int n, int m)
{
    memset(dp, 0, sizeof(dp));
    int k;
    for (int i = 1; i <= n; i++)
    {
        k = 0;
        for (int j = 1; j <= m; j++)
        {
            if (s1[i] == s2[j])
                if (dp[j] <= dp[k])
                    dp[j] = dp[k] + 1;
            if (s1[i] > s2[j])
                if (dp[k] < dp[j])
                    k = j;
        }
    }
    int ans = 0;
    for (int i = 1; i <= m; i++) ans = max(ans, dp[i]);
    return ans;
}
int main()
{
    int T, n, m;
    scanf("%d", &T);
    while (T--)
    {
        scanf("%d", &n);
        for (int i = 1; i <= n; i++) scanf("%d", &s1[i]);
        scanf("%d", &m);
        for (int i = 1; i <= m; i++) scanf("%d", &s2[i]);
        printf("%d\n", LCIS(n, m));
        if (T) puts("");
    }
    return 0;
}

比较复杂一点的就是求路径的,就是求出这个LCIS序列

zoj 2432

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

const int maxn =550;
int s1[maxn], s2[maxn];
int dp[maxn][maxn];
struct Path {
    int x, y;
}path[maxn][maxn];
int R;
int LCIS(int n, int m)
{
    memset(dp, 0, sizeof(dp));
    int k;
    for (int i = 1; i <= n; i++)
    {
        k = 0;
        int x = 0, y = 0;
        for (int j = 1; j <= m; j++)
        {
            dp[i][j] = dp[i - 1][j];
            path[i][j].x = i - 1;
            path[i][j].y = j;
            if (s1[i] == s2[j])
                if (dp[i][j] <= dp[i][k])
                {
                    dp[i][j] = dp[i][k] + 1;
                    path[i][j].x = x;
                    path[i][j].y = y;
                }
            if (s1[i] > s2[j])
                if (dp[i][k] < dp[i][j])
                {
                    k = j;
                    x = i - 1;
                    y = j;
                }
        }
    }
    int ans = 0;
    for (int i = 1; i <= m; i++) 
        if (ans < dp[n][i])
        {
            R = i;
            ans = dp[n][i];
        }
    return ans;
}
int p[maxn * 2];
void print(int n)
{
    int cnt = 0;
    int tx = n;
    int ty = R;
    while (dp[tx][ty])
    {
        int tmpx = path[tx][ty].x;
        int tmpy = path[tx][ty].y;
        if (dp[tmpx][tmpy] != dp[tx][ty])
            p[cnt++] = s1[tx];
        tx = tmpx;
        ty = tmpy;
    }
    for (int i = cnt - 1; i >= 0; i--)
        printf("%d ", p[i]);
    puts("");
}
int main()
{
    int T, n, m;
    scanf("%d", &T);
    while (T--)
    {
        scanf("%d", &n);
        for (int i = 1; i <= n; i++) scanf("%d", &s1[i]);
        scanf("%d", &m);
        for (int i = 1; i <= m; i++) scanf("%d", &s2[i]);
        printf("%d\n", LCIS(n, m));
        print(n);
        if (T) puts("");
    }
    return 0;
}

关于LCS的应用

http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1092

给定一个字符串,让求最少添加多少个字符使得成为回文串。

思路:因为回文字符串是对称的,所以把回文字符串反过来和它本身求LCS,求出来还是它本身,所以,把原来的字符串反过来和它求LCS,那么求出来之后的长度就说明里买能已经存在的回文串长度,剩下的长度就是需要添加的长度。

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

const int maxn = 1100;
char s1[maxn], s2[maxn];
int dp[maxn][maxn];
int main()
{
    while (~scanf("%s", s1 + 1))
    {
        int len = strlen(s1 + 1);
        strcpy(s2 + 1, s1 + 1);
        reverse(s2 + 1, s2 + len + 1);
        memset(dp, 0, sizeof(dp));
        for (int i = 1; i <= len; i++)
        {
            for (int j = 1; j <= len; j++)
            {
                if (s1[i] == s2[j])
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                else 
                {
                    dp[i][j] = max(dp[i][j], dp[i - 1][j]);
                    dp[i][j] = max(dp[i][j], dp[i][j - 1]);
                }
            }
        }
        printf("%d\n", len - dp[len][len]);
    }
    return 0;
}

 

posted @ 2015-12-28 15:05  Howe_Young  阅读(1015)  评论(0编辑  收藏  举报