莫烦Python 4
莫烦Python 4
RNN Classifier 循环神经网络
问题描述
使用RNN对MNIST里面的图片进行分类
关键
SimpleRNN()参数
- batch_input_shape
使用状态RNN的注意事项
可以将RNN设置为‘stateful’,意味着由每个batch计算出的状态都会被重用于初始化下一个batch的初始状态。状态RNN假设连续的两个batch之中,相同下标的元素有一一映射关系。
要启用状态RNN,请在实例化层对象时指定参数stateful=True,并在Sequential模型使用固定大小的batch:通过在模型的第一层传入batch_size=(…)和input_shape来实现。在函数式模型中,对所有的输入都要指定相同的batch_size。
如果要将循环层的状态重置,请调用.reset_states(),对模型调用将重置模型中所有状态RNN的状态。对单个层调用则只重置该层的状态。
(samples,timesteps,input_dim)
代码
'''
RNN Classifier 循环神经网络
'''
import numpy as np
np.random.seed(1337)
from keras.datasets import mnist
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import SimpleRNN, Activation, Dense
from keras.optimizers import Adam
time_step = 28
input_size = 28
batch_size = 50
output_size = 10
cell_size = 50
LR = 0.001
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = X_train.reshape(-1, 28, 28) / 255. # normalize
X_test = X_test.reshape(-1, 28, 28) / 255. # normalize
y_train = np_utils.to_categorical(y_train, num_classes=10)
y_test = np_utils.to_categorical(y_test, num_classes=10)
model = Sequential()
model.add(
SimpleRNN(
batch_input_shape=(None, time_step, input_size),
units=cell_size
)
)
model.add(
Dense(output_size)
)
model.add(Activation('softmax'))
adam = Adam(LR)
model.compile(
optimizer=adam,
loss='categorical_crossentropy',
metrics=['accuracy']
)
model.summary()
model.fit(X_train, y_train, batch_size=batch_size, epochs=2, verbose=2, validation_data=(X_test, y_test))
结果
Model: "sequential_2"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
simple_rnn_2 (SimpleRNN) (None, 50) 3950
_________________________________________________________________
dense_2 (Dense) (None, 10) 510
_________________________________________________________________
activation_2 (Activation) (None, 10) 0
=================================================================
Total params: 4,460
Trainable params: 4,460
Non-trainable params: 0
_________________________________________________________________
Train on 60000 samples, validate on 10000 samples
Epoch 1/2
- 12s - loss: 0.6643 - accuracy: 0.7966 - val_loss: 0.4501 - val_accuracy: 0.8550
Epoch 2/2
- 9s - loss: 0.3220 - accuracy: 0.9087 - val_loss: 0.2445 - val_accuracy: 0.9359