kubelet源码分析——启动Pod
前文说到Kubelet启动时,调用到kubelet.Run方法,里面最核心的就是调用到kubelet.syncLoop。它是一个循环,这个循环里面有若干个检查和同步操作,其中一个是地在监听Pod的增删改事件,当一个Pod被Scheduler调度到某个Node之后,就会触发到kubelet.syncLoop里面的事件,经过一系列的操作,最后达到Pod正常跑起来。
kubelet.syncLoop
kubelet.syncLoop /pkg/kubelet/kubelet.go
|--kl.syncLoopIteration(updates, handler, syncTicker.C, housekeepingTicker.C, plegCh)
|--u, open := <-configCh
|--handler.HandlePodAdditions(u.Pods)即Kubelet.HandlePodAdditions
|--sort.Sort(sliceutils.PodsByCreationTime(pods))
|--kl.handleMirrorPod(pod, start)
|--kl.dispatchWork
|--kl.dispatchWork(pod, kubetypes.SyncPodCreate, mirrorPod, start)
|--kl.podWorkers.UpdatePod即podWorkers.UpdatePod /pkg/kubelet/pod_worker.go
|--p.managePodLoop
|--p.syncPodFn
syncLoop
即使没有需要更新的 pod 配置,kubelet 也会定时去做同步和清理 pod 的工作。然后在 for 循环中一直调用 syncLoopIteration,如果在每次循环过程中出现比较严重的错误,kubelet 会记录到 runtimeState 中,遇到错误就等待 5 秒中继续循环。
func (kl *Kubelet) syncLoop(updates <-chan kubetypes.PodUpdate, handler SyncHandler) {
// syncTicker 每秒检测一次是否有需要同步的 pod workers
syncTicker := time.NewTicker(time.Second)
defer syncTicker.Stop()
// 每两秒检测一次是否有需要清理的 pod
housekeepingTicker := time.NewTicker(housekeepingPeriod)
defer housekeepingTicker.Stop()
// pod 的生命周期变化
plegCh := kl.pleg.Watch()
...
for {
if err := kl.runtimeState.runtimeErrors(); err != nil {
klog.Errorf("skipping pod synchronization - %v", err)
// exponential backoff
time.Sleep(duration)
duration = time.Duration(math.Min(float64(max), factor*float64(duration)))
continue
}
// reset backoff if we have a success
duration = base
...
if !kl.syncLoopIteration(updates, handler, syncTicker.C, housekeepingTicker.C, plegCh) {
break
}
...
}
...
}
syncLoopIteration
syncLoopIteration 这个方法就会对多个管道进行遍历,发现任何一个管道有消息就交给 handler 去处理。对于pod创建相关的就是configCh,它会传递来自3个来源(file,http,apiserver)的pod的变化(增,删,改)。其他相关管道还有每1秒同步一次pod的syncCh,每1秒检查一下是否需要清理pod的housekeepingCh 等等。
func (kl *Kubelet) syncLoopIteration(configCh <-chan kubetypes.PodUpdate, handler SyncHandler,
syncCh <-chan time.Time, housekeepingCh <-chan time.Time, plegCh <-chan *pleg.PodLifecycleEvent) bool {
select {
case u, open := <-configCh: //三个来源的更新事件
....
switch u.Op {
case kubetypes.ADD:
klog.V(2).Infof("SyncLoop (ADD, %q): %q", u.Source, format.Pods(u.Pods))
// After restarting, kubelet will get all existing pods through
// ADD as if they are new pods. These pods will then go through the
// admission process and *may* be rejected. This can be resolved
// once we have checkpointing.
handler.HandlePodAdditions(u.Pods)
.....
}
case <-syncCh: //定时器1秒一次,说是sync
....
case update := <-kl.livenessManager.Updates(): ///存活检查
....
case <-housekeepingCh: //定时器2秒一次,清理的 pod
}
HandlePodAddtions 处理pod的新增事件
func (kl *Kubelet) HandlePodAdditions(pods []*v1.Pod) {
sort.Sort(sliceutils.PodsByCreationTime(pods)) //将pods按照创建日期排列,保证最先创建的 pod 会最先被处理
for _, pod := range pods {
// 把 pod 加入到 podManager 中。statusManager,volumeManager,runtimeManager都依赖于这个podManager
kl.podManager.AddPod(pod)
//处理静态pod,实际上内部同样是调用了kl.dispatchWork,这里主要跳过了拒绝掉pod的判断
if kubetypes.IsMirrorPod(pod) {
kl.handleMirrorPod(pod, start)
continue
}
if !kl.podIsTerminated(pod) {
// Only go through the admission process if the pod is not
// terminated.
// We failed pods that we rejected, so activePods include all admitted
// pods that are alive.
activePods := kl.filterOutTerminatedPods(existingPods)
////验证 pod 是否能在该节点运行,如果不可以直接拒绝;
// Check if we can admit the pod; if not, reject it.
if ok, reason, message := kl.canAdmitPod(activePods, pod); !ok {
kl.rejectPod(pod, reason, message)
continue
}
}
....
kl.dispatchWork(pod, kubetypes.SyncPodCreate, mirrorPod, start)
.....
}
}
UpdatePod
此处调用managePodLoop通过一个协程去执行,通过一个podUpdates的map标记是否有创建过协程,然后通过working这个map标记是否有运行,没有运行的往通道里面传递,让managePodLoop得以执行
func (p *podWorkers) UpdatePod(options *UpdatePodOptions) {
var podUpdates chan UpdatePodOptions
if podUpdates, exists = p.podUpdates[uid]; !exists {
p.podUpdates[uid] = podUpdates
go func() {
defer runtime.HandleCrash()
p.managePodLoop(podUpdates)
}()
}
if !p.isWorking[pod.UID] {
p.isWorking[pod.UID] = true
podUpdates <- *options
} else {
...
}
....
}
managePodLoop
到达syncPodFn方法调用,他是podWorkers的一个字段,在构造podWorkers的时候传入,实际就是kubelet.syncPod方法
func (p *podWorkers) managePodLoop(podUpdates <-chan UpdatePodOptions) {
...
err = p.syncPodFn(syncPodOptions{
mirrorPod: update.MirrorPod,
pod: update.Pod,
podStatus: status,
killPodOptions: update.KillPodOptions,
updateType: update.UpdateType,
})
...
}
Pod sync(Kubelet.syncPod)
1 如果是 pod 创建事件,会记录一些 pod latency 相关的 metrics;
2 生成一个 v1.PodStatus 对象,Pod的状态包括这些 Pending Running Succeeded Failed Unknown
3 PodStatus 生成之后,将发送给 Pod status manager
4 运行一系列 admission handlers,确保 pod 有正确的安全权限
5 kubelet 将为这个 pod 创建 cgroups。
6 创建容器目录 /var/run/kubelet/pods/podid volume $poddir/volumes plugins $poddir/plugins
7 volume manager 将 等待volumes attach 完成
8 从 apiserver 获取 Spec.ImagePullSecrets 中指定的 secrets,注入容器
9 容器运行时(runtime)创建容器
由于代码篇幅较长,这里就只粘出关键的方法或函数调用,代码位于/pkg/kubelet/kubelet.go
func (kl *Kubelet) syncPod(o syncPodOptions) error {
//1. 如果是 pod 创建事件,会记录一些 pod latency 相关的 metrics
// Record pod worker start latency if being created
// TODO: make pod workers record their own latencies
if updateType == kubetypes.SyncPodCreate {
if !firstSeenTime.IsZero() {
// This is the first time we are syncing the pod. Record the latency
// since kubelet first saw the pod if firstSeenTime is set.
metrics.PodWorkerStartDuration.Observe(metrics.SinceInSeconds(firstSeenTime))
} else {
klog.V(3).Infof("First seen time not recorded for pod %q", pod.UID)
}
}
//2. 生成一个 v1.PodStatus 对象
apiPodStatus := kl.generateAPIPodStatus(pod, podStatus)
//3.1. 生成PodStatus
apiPodStatus := kl.generateAPIPodStatus(pod, podStatus)
//4. 运行一系列 admission handlers,确保 pod 有正确的安全权限
runnable := kl.canRunPod(pod)
....
//3.2. PodStatus 生成之后,将发送给 Pod status manager
kl.statusManager.SetPodStatus(pod, apiPodStatus)
//5. kubelet 将为这个 pod 创建 cgroups
if !kl.podIsTerminated(pod) {
if !(podKilled && pod.Spec.RestartPolicy == v1.RestartPolicyNever) {
if !pcm.Exists(pod) {
if err := kl.containerManager.UpdateQOSCgroups(); err != nil {
klog.V(2).Infof("Failed to update QoS cgroups while syncing pod: %v", err)
}
if err := pcm.EnsureExists(pod); err != nil {
kl.recorder.Eventf(pod, v1.EventTypeWarning, events.FailedToCreatePodContainer, "unable to ensure pod container exists: %v", err)
return fmt.Errorf("failed to ensure that the pod: %v cgroups exist and are correctly applied: %v", pod.UID, err)
}
}
}
}
//6 创建容器目录
// Make data directories for the pod
if err := kl.makePodDataDirs(pod); err != nil {
kl.recorder.Eventf(pod, v1.EventTypeWarning, events.FailedToMakePodDataDirectories, "error making pod data directories: %v", err)
klog.Errorf("Unable to make pod data directories for pod %q: %v", format.Pod(pod), err)
return err
}
// Volume manager will not mount volumes for terminated pods
if !kl.podIsTerminated(pod) {
//7 volume manager 将 等待volumes attach 完成
//等待挂载,但是挂载不在这里执行
// Wait for volumes to attach/mount
if err := kl.volumeManager.WaitForAttachAndMount(pod); err != nil {
kl.recorder.Eventf(pod, v1.EventTypeWarning, events.FailedMountVolume, "Unable to attach or mount volumes: %v", err)
klog.Errorf("Unable to attach or mount volumes for pod %q: %v; skipping pod", format.Pod(pod), err)
return err
}
}
//8 从 apiserver 获取 Spec.ImagePullSecrets 中指定的 secrets,注入容器
//部分pod会有ImagePullSecrets,用于登录镜像库拉镜像
// Fetch the pull secrets for the pod
pullSecrets := kl.getPullSecretsForPod(pod)
//9 容器运行时(runtime)创建容器
// Call the container runtime's SyncPod callback
result := kl.containerRuntime.SyncPod(pod, podStatus, pullSecrets, kl.backOff)
}
运行时创建容器(kubeGenericRuntimeManager.SyncPod)
1 计算sandbox和container变化
2 如果sandbox变更了就要把pod kill了
3 kill掉pod中没有运行的container
4 要创建sandbox的就创建
5 创建临时容器
6 创建init容器
7 创建业务容器
代码位于/pkg/kubelet/kuberuntime/kuberuntime_manager.go
func (m *kubeGenericRuntimeManager) SyncPod(pod *v1.Pod, podStatus *kubecontainer.PodStatus, pullSecrets []v1.Secret, backOff *flowcontrol.Backoff) (result kubecontainer.PodSyncResult) {
// Step 1: Compute sandbox and container changes.
podContainerChanges := m.computePodActions(pod, podStatus)
// Step 2: Kill the pod if the sandbox has changed.
if podContainerChanges.KillPod {
killResult := m.killPodWithSyncResult(pod, kubecontainer.ConvertPodStatusToRunningPod(m.runtimeName, podStatus), nil)
} else {
// Step 3: kill any running containers in this pod which are not to keep.
for containerID, containerInfo := range podContainerChanges.ContainersToKill {
if err := m.killContainer(pod, containerID, containerInfo.name, containerInfo.message, nil); err != nil {
}
}
}
// Step 4: Create a sandbox for the pod if necessary.
podSandboxID := podContainerChanges.SandboxID
if podContainerChanges.CreateSandbox {
podSandboxID, msg, err = m.createPodSandbox(pod, podContainerChanges.Attempt)
}
// Step 5: start ephemeral containers
if utilfeature.DefaultFeatureGate.Enabled(features.EphemeralContainers) {
for _, idx := range podContainerChanges.EphemeralContainersToStart {
start("ephemeral container", ephemeralContainerStartSpec(&pod.Spec.EphemeralContainers[idx]))
}
}
// Step 6: start the init container.
if container := podContainerChanges.NextInitContainerToStart; container != nil {
// Start the next init container.
if err := start("init container", containerStartSpec(container)); err != nil {
return
}
}
// Step 7: start containers in podContainerChanges.ContainersToStart.
for _, idx := range podContainerChanges.ContainersToStart {
start("container", containerStartSpec(&pod.Spec.Containers[idx]))
}
return
}
创建sandbox
1 拉sandbox镜像
2 创建sandbox 容器
3 创建sandbox的checkpoint
4 启动sandbox容器,如果失败交由kubelet GC
5 hostNetwork就可以返回,否则让CNI编织网络
这个过程会涉及到几层的调用链,才会找到最终创建sandbox的代码,从kubeGenericRuntimeManager.SyncPod起
m.createPodSandbox /pkg/kubelet/kuberuntime/kuberuntime_manager.go
|--m.runtimeService.RunPodSandbox /pkg/kubelet/kuberuntime/kuberuntime_sandbox.go
|--r.runtimeClient.RunPodSandbox runtimeService.RunPodSandbox的实现类是remoteRuntimeService /pkg/kubelet/cri/remote/remote_runtime.go
|--dockerService.RunPodSandbox /pkg/kubelet/dockershim/docker_sandbox/go
dockerService.RunPodSandbox方法的简略如下
func (ds *dockerService) RunPodSandbox(ctx context.Context, r *runtimeapi.RunPodSandboxRequest) (*runtimeapi.RunPodSandboxResponse, error) {
// Step 1: Pull the image for the sandbox.
if err := ensureSandboxImageExists(ds.client, image); err != nil {
return nil, err
}
// Step 2: Create the sandbox container.
createConfig, err := ds.makeSandboxDockerConfig(config, image)
createResp, err := ds.client.CreateContainer(*createConfig)
// Step 3: Create Sandbox Checkpoint.
if err = ds.checkpointManager.CreateCheckpoint(createResp.ID, constructPodSandboxCheckpoint(config)); err != nil {
return nil, err
}
// Step 4: Start the sandbox container.
err = ds.client.StartContainer(createResp.ID)
// Step 5: Setup networking for the sandbox.
if config.GetLinux().GetSecurityContext().GetNamespaceOptions().GetNetwork() == runtimeapi.NamespaceMode_NODE {
return resp, nil
}
err = ds.network.SetUpPod(config.GetMetadata().Namespace, config.GetMetadata().Name, cID, config.Annotations, networkOptions)
}
CNI编织网路
kubelet使用 /etc/cni/net.d的配置文件启动 /opt/cni/bin 二进制的CNI 插件
CNI 插件创建veth peer,分配ip,设置ip等
创建临时容器、 init 容器及业务容器
1 拉镜像
2 创建容器
3 启动容器
4 执行post start hook
三种容器都是调用了kubeGenericRuntimeManager.SyncPod内定义的局部函数,只是因为容器类型不一样而入参不一样而已
在局部函数调用kubeGenericRuntimeManager.startContainer方法简略如下,代码路径/pkg/kubelet/kuberuntime/kuberuntime_container.go
func (m *kubeGenericRuntimeManager) startContainer(podSandboxID string, podSandboxConfig *runtimeapi.PodSandboxConfig, spec *startSpec, pod *v1.Pod, podStatus *kubecontainer.PodStatus, pullSecrets []v1.Secret, podIP string, podIPs []string) (string, error) {
// Step 1: pull the image.
imageRef, msg, err := m.imagePuller.EnsureImageExists(pod, container, pullSecrets, podSandboxConfig)
// Step 2: create the container.
containerID, err := m.runtimeService.CreateContainer(podSandboxID, containerConfig, podSandboxConfig)
// Step 3: start the container.
err = m.runtimeService.StartContainer(containerID)
// Step 4: execute the post start hook.
if container.Lifecycle != nil && container.Lifecycle.PostStart != nil {
msg, handlerErr := m.runner.Run(kubeContainerID, pod, container, container.Lifecycle.PostStart)
}
}
小结
本篇从kubelet的主循环开始,讲述了pod的启动过程,包括状态更新,分配cgroup,创建容器目录,等待volume挂载,注入imagepull secret,创建sandbox,调用cni编织网络,启动临时容器,init容器,业务容器,执行postStart生命周期钩子。
如有兴趣,可阅读鄙人“k8s源码之旅”系列的其他文章
kubelet源码分析——kubelet简介与启动
kubelet源码分析——启动Pod
kubelet源码分析——关闭Pod
kubelet源码分析——监控Pod变更
scheduler源码分析——调度流程
apiserver源码分析——启动流程
apiserver源码分析——处理请求
参考文章
万字长文:K8s 创建 pod 时,背后到底发生了什么?
kubelet 创建 pod 的流程
Pod 的创建
kubernetes/k8s CRI分析-kubelet创建pod分析