博客园  :: 首页  :: 新随笔  :: 联系 :: 订阅 订阅  :: 管理

Python之使用Pandas库实现MySQL数据库的读写

Posted on 2020-04-09 09:52  徐正柱-  阅读(1711)  评论(0编辑  收藏  举报

本次分享将介绍如何在Python中使用Pandas库实现MySQL数据库的读写。首先我们需要了解点ORM方面的知识。

ORM技术

  对象关系映射技术,即ORM(Object-Relational Mapping)技术,指的是把关系数据库的表结构映射到对象上,通过使用描述对象和数据库之间映射的元数据,将程序中的对象自动持久化到关系数据库中。
  在Python中,最有名的ORM框架是SQLAlchemy。Java中典型的ORM中间件有:Hibernate,ibatis,speedframework。

SQLAlchemy

  SQLAlchemy是Python编程语言下的一款开源软件。提供了SQL工具包及对象关系映射(ORM)工具,使用MIT许可证发行。
  可以使用pip命令安装SQLAlchemy模块:

pip install sqlalchemy

  SQLAlchemy模块提供了create_engine()函数用来初始化数据库连接,SQLAlchemy用一个字符串表示连接信息:

'数据库类型+数据库驱动名称://用户名:口令@机器地址:端口号/数据库名'

Pandas读写MySQL数据库

  我们需要以下三个库来实现Pandas读写MySQL数据库:

  • pandas
  • sqlalchemy
  • pymysql

其中,pandas模块提供了read_sql_query()函数实现了对数据库的查询,to_sql()函数实现了对数据库的写入,并不需要实现新建MySQL数据表。sqlalchemy模块实现了与不同数据库的连接,而pymysql模块则使得Python能够操作MySQL数据库。
  我们将使用MySQL数据库中的mydb数据库以及employee表,内容如下:

 
mydb数据库以及employee表

  下面将介绍一个简单的例子来展示如何在pandas中实现对MySQL数据库的读写:

# -*- coding: utf-8 -*-

# 导入必要模块
import pandas as pd
from sqlalchemy import create_engine

# 初始化数据库连接,使用pymysql模块
# MySQL的用户:root, 密码:147369, 端口:3306,数据库:mydb
engine = create_engine('mysql+pymysql://root:147369@localhost:3306/mydb')

# 查询语句,选出employee表中的所有数据
sql = '''
      select * from employee;
      '''

# read_sql_query的两个参数: sql语句, 数据库连接
df = pd.read_sql_query(sql, engine)

# 输出employee表的查询结果
print(df)

# 新建pandas中的DataFrame, 只有id,num两列
df = pd.DataFrame({'id':[1,2,3,4],'num':[12,34,56,89]})

# 将新建的DataFrame储存为MySQL中的数据表,不储存index列
df.to_sql('mydf', engine, index= False)

print('Read from and write to Mysql table successfully!')

  程序的运行结果如下:

 
程序的运行结果

  在MySQL中查看mydf表格:

 
mydf表格

这说明我们确实将pandas中新建的DataFrame写入到了MySQL中!

将CSV文件写入到MySQL中

  以上的例子实现了使用Pandas库实现MySQL数据库的读写,我们将再介绍一个实例:将CSV文件写入到MySQL中,示例的mpg.CSV文件前10行如下:

 
mpg.CSV文件

示例的Python代码如下:

# -*- coding: utf-8 -*-

# 导入必要模块
import pandas as pd
from sqlalchemy import create_engine

# 初始化数据库连接,使用pymysql模块
engine = create_engine('mysql+pymysql://root:147369@localhost:3306/mydb')

# 读取本地CSV文件
df = pd.read_csv("E://mpg.csv", sep=',')

# 将新建的DataFrame储存为MySQL中的数据表,不储存index列
df.to_sql('mpg', engine, index= False)

print("Write to MySQL successfully!")

  在MySQL中查看mpg表格:

 
mpg表格

仅仅5句Python代码就实现了将CSV文件写入到MySQL中,这无疑是简单、方便、迅速、高效的!

总结

  本文主要介绍了ORM技术以及SQLAlchemy模块,并且展示了两个Python程序的实例,介绍了如何使用Pandas库实现MySQL数据库的读写。程序本身并不难,关键在于多多练习。



作者:山阴少年
链接:https://www.jianshu.com/p/238a13995b2b
来源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。