博客园  :: 首页  :: 新随笔  :: 联系 :: 订阅 订阅  :: 管理

Singleton设计模式的C#实现(外摘)

Posted on 2007-07-04 17:47  徐正柱-  阅读(265)  评论(0编辑  收藏  举报
Singleton模式 

   Singleton(译为单件或单态)模式是设计模式中比较简单而常用的模式。

   有些时候在整个应用程序中,会要求某个类有且只有一个实例,这个时候可以采用Singleton模式进行设计。用Singleton模式设计的类不仅能保证在应用中只有一个实例,而且提供了一种非全局变量的方法进行全局访问,称为全局访问点,这样对于没有全局变量概念的纯面向对象语言来说是非常方便的,比如C#

   本文用一个计数器的例子来描述在C#中如何使用Singleton模式:计数的值设计为计数器类的一个私有成员变量,它被4个不同的线程进行读写操作,为保证计数的正确性,在整个应用当中必然要求计数器类的实例是唯一的。

Singleton的实现方式

   首先看看教科书方式的Singleton标准实现的两种方法,以下用的是类C#伪代码:

   方法一:
using System; 
namespace csPattern.Singleton
{
public class Singleton
{
static Singleton uniSingleton = new Singleton();
private Singleton() {}
static public Singleton instance()
{
return uniSingleton;
}
}
}

   方法二:

using System; 
namespace csPattern.Singleton
{
public class Singleton
{
static Singleton uniSingleton;
private Singleton() {}
static public Singleton instance()
{
if (null == uniSingleton)
{
uniSingleton = new Singleton _lazy();
}
return uniSingleton;
}
}
}

   Singleton模式的实现有两个技巧:一是使用静态成员变量保存“全局”的实例,确保了唯一性,使用静态的成员方法instance() 代替 new关键字来获取该类的实例,达到全局可见的效果。二是将构造方法设置成为private,如果使用new关键字创建类的实例,则编译报错,以防编程时候笔误。

   上面方法二的初始化方式称为lazy initialization,是在第一次需要实例的时候才创建类的实例,与方法一中类的实例不管用不用一直都有相比,方法二更加节省系统资源。但是方法二在多线程应用中有时会出现多个实例化的现象。
   假设这里有2个线程:主线程和线程1,在创建类的实例的时候可能会遇到一些原因阻塞一段时间(比如网络速度或者需要等待某些正在使用的资源的释放),此时的运行情况如下:

   主线程首先去调用instance()试图获得类的实例,instance()成员方法判断该类没有创建唯一实例,于是开始创建实例。由于一些因素,主线程不能马上创建成功,而需要等待一些时间。此时线程1也去调用instance()试图获得该类的实例,因为此时实例还未被主线程成功创建,因此线程1又开始创建新实例。结果是两个线程分别创建了两次实例,对于计数器类来说,就会导致计数的值被重置,与Singleton的初衷违背。解决这个问题的办法是同步。

   下面看看本文的计数器的例子的实现:

   使用方法一:

using System; 
using System.Threading;
namespace csPattern.Singleton
{
public class Counter
{
static Counter uniCounter = new Counter(); //存储唯一的实例。
private int totNum = 0; //存储计数值。
private Counter()
{
Thread.Sleep(100); //这里假设因为某种因素而耽搁了100毫秒。
//在非lazy initialization 的情况下, 不会影响到计数。.
}
static public Counter instance()
{
return uniCounter;
}
public void Inc() { totNum ++;} //计数加1。
public int GetCounter() { return totNum;} //获得当前计数值。
}
}

   以下是调用Counter类的客户程序,在这里我们定义了四个线程同时使用计数器,每个线程使用4次,最后得到的正确结果应该是16:

using System; 
using System.IO;
using System.Threading;
namespace csPattern.Singleton.MutileThread
{
public class MutileClient
{
public MutileClient() {}
public void DoSomeWork()
{
Counter myCounter = Counter.instance(); //方法一
//Counter_lazy myCounter = Counter_lazy.instance(); //方法二
for (int i = 1; i < 5; i++)
{
myCounter.Inc();
Console.WriteLine("线程{0}报告: 当前counter为: {1}", Thread.CurrentThread.Name.ToString(), myCounter.GetCounter().ToString());
}
}
public void ClientMain()
{
Thread thread0 = Thread.CurrentThread;
thread0.Name = "Thread 0";
Thread thread1 =new Thread(new ThreadStart(this.DoSomeWork));
thread1.Name = "Thread 1";
Thread thread2 =new Thread(new ThreadStart(this.DoSomeWork));
thread2.Name = "Thread 2";
Thread thread3 =new Thread(new ThreadStart(this.DoSomeWork));
thread3.Name = "Thread 3";
thread1.Start();
thread2.Start();
thread3.Start();
DoSomeWork(); //线程0也只执行和其他线程相同的工作。
}
}
}

   以下为Main函数,本程序的测试入口:

using System; 
namespace csPattern.Singleton
{
public class RunMain
{
public RunMain() {}
static public void Main(string[] args)
{
MutileThread.MutileClient myClient = new MutileThread.MutileClient();
myClient.ClientMain();
System.Console.ReadLine();
}
}
}

   执行结果如下:

   线程Thread 1报告: 当前counter为: 2
   线程Thread 1报告: 当前counter为: 4
   线程Thread 1报告: 当前counter为: 5
   线程Thread 1报告: 当前counter为: 6
   线程Thread 3报告: 当前counter为: 7
   线程Thread 3报告: 当前counter为: 8
   线程Thread 3报告: 当前counter为: 9
   线程Thread 3报告: 当前counter为: 10
   线程Thread 0报告: 当前counter为: 1
   线程Thread 0报告: 当前counter为: 11
   线程Thread 0报告: 当前counter为: 12
   线程Thread 0报告: 当前counter为: 13
   线程Thread 2报告: 当前counter为: 3
   线程Thread 2报告: 当前counter为: 14
   线程Thread 2报告: 当前counter为: 15
   线程Thread 2报告: 当前counter为: 16

   由于系统线程调度的不同,每次的执行结果也不同,但是最终结果一定是16。

   方法一中由于实例一开始就被创建,所以instance()方法无需再去判断是否已经存在唯一的实例,而返回该实例,所以不会出现计数器类多次实例化的问题。
   使用方法二:

using System; 
using System.Threading;
using System.Runtime.CompilerServices;
namespace csPattern.Singleton
{
public class Counter_lazy
{
static Counter_lazy uniCounter;
private int totNum = 0;
private Counter_lazy()
{
Thread.Sleep(100); //假设多线程的时候因某种原因阻塞100毫秒
}
[MethodImpl(MethodImplOptions.Synchronized)] //方法的同步属性
static public Counter_lazy instance()
{
if (null == uniCounter)
{
uniCounter = new Counter_lazy();
}
return uniCounter;
}
public void Inc() { totNum ++;}
public int GetCounter() { return totNum;}
}
}

   不知道大家有没有注意到instance()方法上方的[MethodImpl(MethodImplOptions.Synchronized)] 语句,他就是同步的要点,他指定了instance()方法同时只能被一个线程使用,这样就避免了线程0调用instance()创建完成实例前线程1就来调用instance()试图获得该实例。

   根据MSDN的提示,也可以使用lock关键字进行线程的加锁,代码如下:

using System; 
using System.Threading;
namespace csPattern.Singleton
{
public class Counter_lazy
{
static Counter_lazy uniCounter;
static object myObject = new object();
private int totNum = 0;
private Counter_lazy()
{
Thread.Sleep(100); //假设多线程的时候因某种原因阻塞100毫秒
}
static public Counter_lazy instance()
{
lock(myObject)
{
if (null == uniCounter)
{
uniCounter = new Counter_lazy();
}
return uniCounter;
}
}
public void Inc() { totNum ++;}
public int GetCounter() { return totNum;}
}
}

   lock()是对一个对象加互斥锁,只允许一个线程访问其后大括号中语句块,直到该语句块的代码执行完才解锁,解锁后才允许其他的线程执行其语句块。

   还可以使用Mutex类进行同步,定义private static Mutex mut = new Mutex();后,修改instance()如下,同样可以得到正确的结果:

static public Counter_lazy instance() 
{
mut.WaitOne();
if (null == uniCounter)
{
uniCounter = new Counter_lazy();
}
mut.ReleaseMutex();
return uniCounter;
}

   注意的是,本例中使用方法二要更改方法一的客户程序,去掉Counter_lazy.intance()的注释,并将Counter.intance()注释。

   singleton模式还可以拓展,只要稍加修改,就可以限制在某个应用中只能允许m个实例存在,而且为m个实例提供全局透明的访问方法。