[BZOJ4819][SDOI2017]新生舞会(分数规划+费用流,KM)

4819: [Sdoi2017]新生舞会

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 1097  Solved: 566
[Submit][Status][Discuss]

Description

学校组织了一次新生舞会,Cathy作为经验丰富的老学姐,负责为同学们安排舞伴。有n个男生和n个女生参加舞会
买一个男生和一个女生一起跳舞,互为舞伴。Cathy收集了这些同学之间的关系,比如两个人之前认识没计算得出 
a[i][j] ,表示第i个男生和第j个女生一起跳舞时他们的喜悦程度。Cathy还需要考虑两个人一起跳舞是否方便,
比如身高体重差别会不会太大,计算得出 b[i][j],表示第i个男生和第j个女生一起跳舞时的不协调程度。当然,
还需要考虑很多其他问题。Cathy想先用一个程序通过a[i][j]和b[i][j]求出一种方案,再手动对方案进行微调。C
athy找到你,希望你帮她写那个程序。一个方案中有n对舞伴,假设没对舞伴的喜悦程度分别是a'1,a'2,...,a'n,
假设每对舞伴的不协调程度分别是b'1,b'2,...,b'n。令
C=(a'1+a'2+...+a'n)/(b'1+b'2+...+b'n),Cathy希望C值最大。

Input

第一行一个整数n。
接下来n行,每行n个整数,第i行第j个数表示a[i][j]。
接下来n行,每行n个整数,第i行第j个数表示b[i][j]。
1<=n<=100,1<=a[i][j],b[i][j]<=10^4

Output

一行一个数,表示C的最大值。四舍五入保留6位小数,选手输出的小数需要与标准输出相等

Sample Input

3
19 17 16
25 24 23
35 36 31
9 5 6
3 4 2
7 8 9

Sample Output

5.357143

HINT

Source

[Submit][Status][Discuss]

有点太裸了,两个算法都非常明显。

”根据答案的式子可以确定是分数规划,根据题目名称‘舞会’可以确定是二分图匹配”然后这题就做完了。

先知道是KM,然后看网上写的都是网络流然后也开始写网络流,写了半天发现是费用流。。

费用流方面并不是普通的最大费用流,因为最后必须全部匹配,所以直接把SPFA成功的条件从一般最大费用流的"dis[T]>0"改成"dis[T]!=-inf"就好了。

 1 #include<cstdio>
 2 #include<algorithm>
 3 #define rep(i,l,r) for (int i=l; i<=r; i++)
 4 #define For(i,x) for (int i=h[x],k; i; i=nxt[i])
 5 using namespace std;
 6 
 7 const int N=210,M=30100,inf=1000000000;
 8 const double eps=1e-10;
 9 double ans,c[M],dis[N];
10 int n,cnt,mn,S,T,f[M],to[M],nxt[M],q[M],pre[N],inq[N],h[N],a[N][N],b[N][N];
11 void add(int u,int v,int w,double co){
12     to[++cnt]=v; f[cnt]=w; c[cnt]=co; nxt[cnt]=h[u]; h[u]=cnt;
13     to[++cnt]=u; f[cnt]=0; c[cnt]=-co; nxt[cnt]=h[v]; h[v]=cnt;
14 }
15 
16 bool spfa(){
17     rep(i,0,T) pre[i]=-1,inq[i]=0,dis[i]=-inf;
18     dis[S]=0; q[1]=S;
19     for (int st=0,ed=1; st<ed; ){
20         int x=q[++st]; inq[x]=0;
21         For(i,x) if (f[i] && dis[k=to[i]]<dis[x]+c[i]){
22             dis[k]=dis[x]+c[i]; pre[k]=i;
23             if (!inq[k]) inq[k]=1,q[++ed]=k;
24         }
25     }
26     return dis[T]!=dis[0];
27 }
28 
29 void work(){
30     for (ans=0; spfa(); ans+=dis[T]*mn){
31         mn=inf;
32         for (int i=pre[T]; ~i; i=pre[to[i^1]]) mn=min(mn,f[i]);
33         for (int i=pre[T]; ~i; i=pre[to[i^1]]) f[i]-=mn,f[i^1]+=mn;
34     }
35 }
36 
37 int main(){
38     freopen("ball.in","r",stdin);
39     freopen("ball.out","w",stdout);
40     scanf("%d",&n);
41     rep(i,1,n) rep(j,1,n) scanf("%d",&a[i][j]);
42     rep(i,1,n) rep(j,1,n) scanf("%d",&b[i][j]);
43     double L=0,R=10000; S=n*2+1,T=n*2+2;
44     while (L+eps<R){
45         double mid=(L+R)/2; ans=0;
46         rep(i,1,2*n+3) h[i]=0; cnt=1;
47         rep(i,1,n) add(S,i,1,0);
48         rep(i,1,n) add(i+n,T,1,0);
49         rep(i,1,n) rep(j,1,n) add(i,j+n,1,a[i][j]-mid*b[i][j]);
50         work(); if (ans>eps) L=mid; else R=mid;
51     }
52     printf("%.6lf\n",L);
53     return 0;
54 }

KM就没什么好说的了,速度快5倍。果然不能依靠玄学,当然这题的图比较稠密也是原因之一。

原来KM也可以跑负权图。

 1 #include<cstdio>
 2 #include<cstring>
 3 #include<algorithm>
 4 #define rep(i,l,r) for (int i=l; i<=r; i++)
 5 #define For(i,x) for (int i=h[x],k; i; i=nxt[i])
 6 using namespace std;
 7 
 8 const int N=210,inf=1000000000;
 9 const double eps=1e-10;
10 int n,lk[N],vx[N],vy[N],a[N][N],b[N][N];
11 double lx[N],ly[N],w[N][N],s[N];
12 double abs(double x){ return (x<0)?-x:x; }
13 
14 bool dfs(int x){
15     vx[x]=1;
16     rep(y,1,n) if (!vy[y]){
17         double t=lx[x]+ly[y]-w[x][y];
18         if (abs(t)<eps){
19             vy[y]=1;
20             if (lk[y]==-1 || dfs(lk[y])) { lk[y]=x; return 1; }
21         }else s[y]=min(s[y],t);
22     }
23     return 0;
24 }
25 
26 double KM(){
27     rep(i,1,n) lx[i]=-inf,ly[i]=0,lk[i]=-1;
28     rep(i,1,n) rep(j,1,n) lx[i]=max(lx[i],w[i][j]);
29     rep(x,1,n){
30         rep(i,1,n) s[i]=inf;
31         while (1){
32             memset(vx,0,sizeof(vx));
33             memset(vy,0,sizeof(vy));
34             if (dfs(x)) break;
35             double d=inf;
36             rep(i,1,n) if (!vy[i]) d=min(d,s[i]);
37             rep(i,1,n) if (vx[i]) lx[i]-=d;
38             rep(i,1,n) if (vy[i]) ly[i]+=d; else s[i]-=d;
39         }
40     }
41     double res=0;
42     rep(i,1,n) res+=w[lk[i]][i];
43     return res;
44 }
45 
46 int main(){
47     freopen("ball.in","r",stdin);
48     freopen("ball.out","w",stdout);
49     scanf("%d",&n);
50     rep(i,1,n) rep(j,1,n) scanf("%d",&a[i][j]);
51     rep(i,1,n) rep(j,1,n) scanf("%d",&b[i][j]);
52     double L=0,R=10000;
53     while (L+eps<R){
54         double mid=(L+R)/2;
55         rep(i,1,n) rep(j,1,n) w[i][j]=a[i][j]-mid*b[i][j];
56         if (KM()>eps) L=mid; else R=mid;
57     }
58     printf("%.6lf\n",L);
59     return 0;
60 }

 

posted @ 2018-04-05 11:10  HocRiser  阅读(269)  评论(0编辑  收藏  举报