[BZOJ2281][SDOI2011]黑白棋(K-Nim博弈)
2281: [Sdoi2011]黑白棋
Time Limit: 3 Sec Memory Limit: 512 MB
Submit: 626 Solved: 390
[Submit][Status][Discuss]Description
小A和小B又想到了一个新的游戏。这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色。最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色不同。小A可以移动白色棋子,小B可以移动黑色的棋子,他们每次操作可以移动1到d个棋子。每当移动某一个棋子时,这个棋子不能跨越两边的棋子,当然也不可以出界。当谁不可以操作时,谁就失败了。小A和小B轮流操作,现在小A先移动,有多少种初始棋子的布局会使他胜利呢?Input
共一行,三个数,n,k,d。Output
输出小A胜利的方案总数。答案对1000000007取模。
Sample Input
10 4 2
Sample Output
182HINT
1<=d<=k<=n<=10000, k为偶数,k<=100。
Source
很有意思的一道博弈题,可惜HZWER学长给出了反例。
那么这一题通过手玩可以发现,最终状态必定是所有棋子全部扎堆在棋盘左端或右端,棋子之间没有间隙。不过仔细观察可以发现,可能在游戏状态中会出现所有棋子扎堆但不在棋盘一端的情况,其实那个时候就已经决定了最终的胜负。因为只要一方朝自己来的方向走了,则另一方必定能也往那边走一步,最终会步步紧逼直到走到棋盘一端。
根据这一点,感性理解一下,这个游戏就是一个把对方棋子“怼”过去的过程,谁怼赢了就是胜者。所以从一开始双方都一定拼尽全力往对面怼,所以有一个结论:先手不可能往左走,后手不可能往右走。
这样这个问题就变成了一个取石子游戏,每对相邻的白子和黑子之间的格子数是石子数(显然共有K/2堆石子),每人每次选不超过k堆取一个石子。
这个问题叫K-Nim,结论是:将所有石子数转成二进制,如果对于每一位二进制,这一位上为1的石子堆数都能被k+1整除则为必败态,否则为必胜态。
证明主要思路是: 1.最终态二进制每一位都为0必为必败态。2.只要有某位的1的个数不被k+1整除,则必然有一种走法使每一位都被整除。 3.如果每一位都被k+1整除,则无论怎么走都不可能使得每一位都仍然能被整除。
这三点分别保证了:最终态是必败态。必胜态必定能走到必败态。必败态只能走到必胜态。
详细证明:http://blog.csdn.net/weixinding/article/details/7321139
这样,我们分别用了“寻找最终态”和“模仿”的技巧将问题转化为了K-Nim问题。回到这一题,最终答案=总方案数-必败态的方案数。
设$f_{i,j}$表示前$i$个二进制位共放了$j$个石子的方案数,则$$ans=C_n^K-\sum_{i=0}^{n-K} f_{s,i}*C_{n-i-K/2}^{K/2}$$s为最高位的1,这里取15就够了。
考虑$f$的转移方程即可:$$f_{i+1,j+k*(d+1)*(1<<i)}\ \ +=\ \ f_{i,j}*C_{K/2}^{k*(d+1)}$$
1 #include<cstdio> 2 #include<cstring> 3 #include<algorithm> 4 #define rep(i,l,r) for (int i=l; i<=r; i++) 5 typedef long long ll; 6 using namespace std; 7 8 const ll N=10010,mod=1000000007; 9 ll tot,ans,bin[25],c[N][205],f[25][N]; 10 int n,K,d,p; 11 12 void add(ll &x,ll y){ x=(x+y)%mod; } 13 void pre(){ 14 rep(i,0,n) c[i][0]=1; 15 rep(i,1,n) rep(j,1,min(2*K,i)) c[i][j]=(c[i-1][j]+c[i-1][j-1])%mod; 16 } 17 int C(int n,int m){ if (m>n-m) m=n-m; return c[n][m]; } 18 19 int main(){ 20 freopen("bzoj2281.in","r",stdin); 21 freopen("bzoj2281.out","w",stdout); 22 bin[0]=1; rep(i,1,15) bin[i]=bin[i-1]<<1; 23 scanf("%d%d%d",&n,&K,&d); K>>=1; 24 pre(); f[0][0]=1; 25 rep(i,0,14) rep(j,0,n-2*K) 26 for (int k=0; k*(d+1)<=K && j+k*(d+1)*bin[i]<=n-2*K; k++) 27 add(f[i+1][j+k*(d+1)*bin[i]],f[i][j]*C(K,k*(d+1))); 28 rep(i,0,n-2*K) add(ans,f[15][i]*C(n-i-K,K)); 29 tot=C(n,K*2); printf("%lld\n",(tot-ans+mod)%mod); 30 return 0; 31 }