[Luogu5106]dkw的lcm
https://minamoto.blog.luogu.org/solution-p5106
容易想到枚举质因子及其次数计算其贡献,容斥计算$\varphi(p^i)$的次方数。
1 #include<cstdio> 2 #include<algorithm> 3 #define rep(i,l,r) for (int i=(l); i<=(r); i++) 4 typedef long long ll; 5 using namespace std; 6 7 const int N=1000010,mod=1e9+7; 8 int n,k,tot,ans,b[N],p[N]; 9 10 int ksm(int a,int b,int mod){ 11 int res=1; 12 for (; b; a=1ll*a*a%mod,b>>=1) 13 if (b & 1) res=1ll*res*a%mod; 14 return res; 15 } 16 17 void init(){ 18 rep(i,2,n){ 19 if (!b[i]) p[++tot]=i; 20 for (int j=1; j<=tot && i*p[j]<=n; j++){ 21 b[i*p[j]]=1; 22 if (i%p[j]==0) break; 23 } 24 } 25 } 26 27 int D(ll pi,ll pi1){ 28 int s1=ksm(n-n/pi,k,mod-1),s2=ksm(n-n/pi1,k,mod-1); 29 return (s1-s2+mod-1)%(mod-1); 30 } 31 32 int main(){ 33 scanf("%d%d",&n,&k); init(); ans=1; 34 rep(i,1,tot) 35 for (ll t=p[i]; t<=n; t*=p[i]) 36 ans=1ll*ans*ksm(t-t/p[i],D(t*p[i],t),mod)%mod; 37 printf("%d\n",ans); 38 return 0; 39 }