POJ 2378 Tree Cutting【树形DP】
Description
Bessie, feeling vindictive, decided to sabotage Farmer John's network by cutting power to one of the barns (thereby disrupting all the connections involving that barn). When Bessie does this, it breaks the network into smaller pieces, each of which retains full connectivity within itself. In order to be as disruptive as possible, Bessie wants to make sure that each of these pieces connects together no more than half the barns on FJ.
Please help Bessie determine all of the barns that would be suitable to disconnect.
Input
* Lines 2..N: Each line contains two integers X and Y and represents a connection between barns X and Y.
Output
Sample Input
10 1 2 2 3 3 4 4 5 6 7 7 8 8 9 9 10 3 8
Sample Output
3 8
Hint
The set of connections in the input describes a "tree": it connects all the barns together and contains no cycles.
OUTPUT DETAILS:
If barn 3 or barn 8 is removed, then the remaining network will have one piece consisting of 5 barns and two pieces containing 2 barns. If any other barn is removed then at least one of the remaining pieces has size at least 6 (which is more than half of the original number of barns, 5).
思路 |
和前两道树形DP很神似,这道题很轻松的一个A了。 题目大意:找若断开某个点,子树节点和的最大值不超过n/2就可以,找出这样的结点。 |
源码 |
#include<stdio.h> #include<string.h> #include<algorithm> #include<vector> using namespace std; int visit[10005], dp[10005], num[10005], map[10005]; int n, t; vector<int>v[10005]; void dfs(int tt) { int i, len=v[tt].size(),minn=0; visit[tt]=1; for(i=0; i<len; i++) { if(!visit[v[tt][i]]) { visit[v[tt][i]]=1; dfs(v[tt][i]); } } for(i=0; i<v[tt].size(); i++) dp[tt]+=dp[v[tt][i]]; dp[tt]++; int sum=0; for(i=0; i<v[tt].size(); i++) { minn=max(minn, dp[v[tt][i]]); sum+=dp[v[tt][i]]; } minn=max(minn, n-sum-1); if(minn<=n/2) num[t++]=tt; } int main() { int i, j, a, b; while(scanf("%d", &n)!=EOF) { for(i=0; i<=n; i++) v[i].clear(); for(i=0; i<n-1; i++) { scanf("%d%d", &a, &b); v[a].push_back(b); v[b].push_back(a); } memset(visit, 0, sizeof(visit)); memset(dp, 0, sizeof(dp)); memset(num, 0, sizeof(num)); memset(map, 0, sizeof(map)); t=0; dfs(1); sort(num, num+t); for(i=0; i<t; i++) printf("%d\n", num[i]); } }
|