Python实现 扩展的欧几里德算法求(模逆数)最大公约数
GCD算法原理:
扩展GCD算法原理:
代码呀:
def gcd(a, b):
while a != 0:
a, b = b%a, a
return b
# calc : b^(-1) mod m
def IntModInverse(b, m, show = True):
if gcd(m,b) != 1:
return None
A1, A2, A3 = 1, 0, m
B1, B2, B3 = 0, 1, b
if show:
print('-'*54)
print("|{:^5}\t{:^5}\t{:^5}\t{:^5}\t{:^5}\t{:^5}\t{:^5}|".format("Q","A1","A2","A3","B1","B2","B3"))
print("|{:^5}\t{:^5}\t{:^5}\t{:^5}\t{:^5}\t{:^5}\t{:^5}|".format("-", A1, A2, A3, B1, B2, B3))
while True:
Q = A3//B3
B1,B2,B3,A1,A2,A3 = (A1-Q*B1),(A2-Q*B2),(A3-Q*B3),B1,B2,B3
if show:
print("|{:^5}\t{:^5}\t{:^5}\t{:^5}\t{:^5}\t{:^5}\t{:^5}|".format(Q, A1, A2, A3, B1, B2, B3))
if B3 == 0:
return None
elif B3 == 1:
break
if show:
print("-"*54)
return B2%m
print("Inverse result", IntModInverse(1234,4321))
输出结果: