对DSA签名算法的攻击

DSA算法介绍:

  DSA是在ElGamal和Schnorr两个签名方案的基础上设计的,其安全性基于求离散对数的困难性。生成签名长度 320 bit,算法描述如下:

(1) 全局公开钥

  l p:满足2L-1<p<2L 的大素数,其中512≤L≤1024且L是64的倍数

  l qp-1的素因子,满足2159<q<2160 ,即q长为160比特。

  l gg=h(p-1)/q mod ph是满足1<h<p-1且使得h(p-1)/q mod p >1的任一整数

(2) 用户秘密钥x

  l x是满足0<x<q的随机数或伪随机数

(3) 用户的公开钥y

  l ygx mod p

(4) 用户为待签消息选取的秘密数k

  l k是满足0<k<q的随机数或伪随机数。

(5) 签名过程

  l 用户对消息M的签名为(r, s),其中r≡(gk mod p) mod q

  l  s≡[k-1(H(M)+xr)] mod q,H(M)是由SHA求出的杂凑值

(6) 验证过程

  l 设接收方收到的消息为M¢,签名为(r¢,s¢)。计算

  l w≡(s¢)-1 mod q,u1≡[H(M¢)w] mod q

  l u2≡r¢w mod q, v≡[(gu1yu2) mod p] mod q

  l 检查v=r ¢是否成立,若相等,则认为签名有效。


 1.利用如下的参数,恢复DSA的秘密钥x

1 p = 800000000000000089e1855218a0e7dac38136ffafa72eda7859f2171e25e65eac698c1702578b07dc2a1076da241c76c62d374d8389ea5aeffd3226a0530cc565f3bf6b50929139ebeac04f48c3c84afb796d61e5a4f9a8fda812ab59494232c7d2b4deb50aa18ee9e132bfa85ac4374d7f9091abc3d015efc871a584471bb1
2 q = f4f47f05794b256174bba6e9b396a7707e563c5b
3 g = 5958c9d3898b224b12672c0b98e06c60df923cb8bc999d119458fef538b8fa4046c8db53039db620c094c9fa077ef389b5322a559946a71903f990f1f7e0e025e2d7f7cf494aff1a0470f5b64c36b625a097f1651fe775323556fe00b3608c887892878480e99041be601a62166ca6894bdd41a7054ec89f756ba9fc95302291
4 y = 84ad4719d044495496a3201c8ff484feb45b962e7302e56a392aee4abab3e4bdebf2955b4736012f21a08084056b19bcd7fee56048e004e44984e2f411788efdc837a0d2e5abb7b555039fd243ac01f0fb2ed1dec568280ce678e931868d23eb095fde9d3779191b8c0299d6e07bbb283e6633451e535c45513b2d33c99ea17

   被签名的消息为:So be friendly, a matter of life and death, just like a etch-a-sketch,它的SHA1 值为(十六进制):0xd2d0714f014a9784047eaeccf956520045c45265。

  得到的签名为:

  r = 548099063082341131477253921760299949438196259240

  s = 857042759984254168557880549501802188789837994940

  已知签名用的"k" 的范围是 0 到2^16。

  请编程恢复DSA的秘密钥x,它的SHA1 值为:0954edd5e0afe5542a4adf012611a91912a3ec16


 思路:

  首先,根据题目提示,可以根据r的取值先计算求出k的值(r≡(gk mod p) mod q);因为2^16穷举一下很轻松,时间复杂度还是可以接受的。

1 #先恢复k的值,穷举1-65536
2 for k in range(2**16):
3   temp=fastExpMod(g,k,p)
4   temp %=q
5   if temp == r:
6     break
7   else:
8     pass
9 print "k=",k

  上面用到了:自定义的幂次取模的函数fastExpMod,

1 def fastExpMod(b, e, m):  #快速幂取模函数;b为底数,e为指数,m为模数
2     result = 1
3     while e != 0:
4         if (e&1) == 1:
5             result = (result * b) % m 
6         e >>= 1
7         b = (b*b) % m
8     return result    #返回取模结果

  其次,可以根据s的取值计算x:

  从 s≡[k-1(H(M)+xr)] mod q ,可以继续推出 xr -1 *[ks-H(M)]  mod q

  这一步将要计算r -1的取值,用到一个自定义的求模逆函数:findModReverse,函数原理是基于扩展欧几里得算法求模逆,贴一下代码:

 1 def gcd(a,b):  #求最大公约数函数
 2     while a!=0:
 3          a,b = b%a,a
 4      return b
 5  def findModReverse(a,m):#这个扩展欧几里得算法求模逆
 6      if gcd(a,m)!=1:
 7          return None
 8      u1,u2,u3 = 1,0,a
 9      v1,v2,v3 = 0,1,m
10      while v3!=0:
11          q = u3//v3
12          v1,v2,v3,u1,u2,u3 = (u1-q*v1),(u2-q*v2),(u3-q*v3),v1,v2,v3
13      return u1%m

   完整代码:

# -*- coding=utf-8 -*-
# py2
import hashlib 
p = 0x800000000000000089e1855218a0e7dac38136ffafa72eda7859f2171e25e65eac698c1702578b07dc2a1076da241c76c62d374d8389ea5aeffd3226a0530cc565f3bf6b50929139ebeac04f48c3c84afb796d61e5a4f9a8fda812ab59494232c7d2b4deb50aa18ee9e132bfa85ac4374d7f9091abc3d015efc871a584471bb1
q = 0xf4f47f05794b256174bba6e9b396a7707e563c5b
g = 0x5958c9d3898b224b12672c0b98e06c60df923cb8bc999d119458fef538b8fa4046c8db53039db620c094c9fa077ef389b5322a559946a71903f990f1f7e0e025e2d7f7cf494aff1a0470f5b64c36b625a097f1651fe775323556fe00b3608c887892878480e99041be601a62166ca6894bdd41a7054ec89f756ba9fc95302291
y = 0x84ad4719d044495496a3201c8ff484feb45b962e7302e56a392aee4abab3e4bdebf2955b4736012f21a08084056b19bcd7fee56048e004e44984e2f411788efdc837a0d2e5abb7b555039fd243ac01f0fb2ed1dec568280ce678e931868d23eb095fde9d3779191b8c0299d6e07bbb283e6633451e535c45513b2d33c99ea17
hash_x=0x0954edd5e0afe5542a4adf012611a91912a3ec16
Hash_M=0xd2d0714f014a9784047eaeccf956520045c45265
r = 548099063082341131477253921760299949438196259240
s = 857042759984254168557880549501802188789837994940

def fastExpMod(b, e, m):    #快速幂取模函数;b为底数,e为指数,m为模数
    result = 1
    while e != 0:
        if (e&1) == 1:
            result = (result * b) % m
        e >>= 1
        # b, b^2, b^4, b^8, ... , b^(2^n)
        b = (b*b) % m
    return result
def gcd(a,b):          #求最大公约数函数
    while a!=0:
        a,b = b%a,a
    return b
def findModReverse(a,m):    #这个扩展欧几里得算法求模逆
    if gcd(a,m)!=1:
        return None
    u1,u2,u3 = 1,0,a
    v1,v2,v3 = 0,1,m
    while v3!=0:
        q = u3//v3
        v1,v2,v3,u1,u2,u3 = (u1-q*v1),(u2-q*v2),(u3-q*v3),v1,v2,v3
    return u1%m
if __name__ == '__main__':
    #先恢复k的值,穷举1-65536
    for k in range(2**16):
        temp=fastExpMod(g,k,p)
        temp %=q
        if temp == r:
            break
        else:
            pass
    print "k=",k    
    r_rev=findModReverse(r,q)
    print "r^-1=",r_rev 

    x=(k*s-Hash_M)%q
    x=x*r_rev %q
    print "x=",x
    hex_x=hex(x)[2:-1]
    print "hex_x=",hex_x
    Hash_x=hashlib.sha1(hex_x).hexdigest()
    print "Sha1(x)=",Hash_x
    if hash_x==int(Hash_x,16):
        print "哈希匹配,求解私钥x正确!"

  执行结果:



2.如下是十一组消息及其DSA签名:

msg: Listen for me, you better listen for me now.
s: 1267396447369736888040262262183731677867615804316
r: 1105520928110492191417703162650245113664610474875
m: a4db3de27e2db3e5ef085ced2bced91b82e0df19

msg: Listen for me, you better listen for me now. s: 29097472083055673620219739525237952924429516683 r: 51241962016175933742870323080382366896234169532 m: a4db3de27e2db3e5ef085ced2bced91b82e0df19
msg: When me rockin' the microphone me rock on steady, s: 277954141006005142760672187124679727147013405915 r: 228998983350752111397582948403934722619745721541 m: 21194f72fe39a80c9c20689b8cf6ce9b0e7e52d4
msg: Yes a Daddy me Snow me are de article dan. s: 1013310051748123261520038320957902085950122277350 r: 1099349585689717635654222811555852075108857446485 m: 1d7aaaa05d2dee2f7dabdc6fa70b6ddab9c051c5
msg: But in a in an' a out de dance em s: 203941148183364719753516612269608665183595279549 r: 425320991325990345751346113277224109611205133736 m: 6bc188db6e9e6c7d796f7fdd7fa411776d7a9ff
msg: Aye say where you come from a, s: 502033987625712840101435170279955665681605114553 r: 486260321619055468276539425880393574698069264007 m: 5ff4d4e8be2f8aae8a5bfaabf7408bd7628f43c9
msg: People em say ya come from Jamaica, s: 1133410958677785175751131958546453870649059955513 r: 537050122560927032962561247064393639163940220795 m: 7d9abd18bbecdaa93650ecc4da1b9fcae911412
msg: But me born an' raised in the ghetto that I want yas to know, s: 559339368782867010304266546527989050544914568162 r: 826843595826780327326695197394862356805575316699 m: 88b9e184393408b133efef59fcef85576d69e249
msg: Pure black people mon is all I mon know. s: 1021643638653719618255840562522049391608552714967 r: 1105520928110492191417703162650245113664610474875 m: d22804c4899b522b23eda34d2137cd8cc22b9ce8
msg: Yeah me shoes a an tear up an' now me toes is a show a s: 506591325247687166499867321330657300306462367256 r: 51241962016175933742870323080382366896234169532 m: bc7ec371d951977cba10381da08fe934dea80314
msg: Where me a born in are de one Toronto, so s: 458429062067186207052865988429747640462282138703 r: 228998983350752111397582948403934722619745721541 m: d6340bfcda59b6b75b59ca634813d572de800e8f 

  这些消息的签名公钥为:

y = 2d026f4bf30195ede3a088da85e398ef869611d0f68f0713d51c9c1a3a26c95105d915e2d8cdf26d056b86b8a7b85519b1c23cc3ecdc6062650462e3063bd179c2a6581519f674a61f1d89a1fff27171ebc1b93d4dc57bceb7ae2430f98a6a4d83d8279ee65d71c1203d2c96d65ebbf7cce9d32971c3de5084cce04a2e147821

  另外,参数p,q,g与上一题的相同。

  请编程恢复DSA的秘密钥x,它的SHA1 值为:ca8f6f7c66fa362d40760d135b763eb8527d3d52


思路:

  从题目所知道的,p、q、g和第一题一样不变,变的是k的值以及私钥x(显然公钥y也要随着改变)。特点是这十一组数据和签名都有共同的私钥x,但是k并不完全一样,首先寻找规律,发现存在几组数据的r值相同,根据定义 r≡(gk mod p) mod q,说明这几组的k值相同

下面图中几组是整理的r相同的几组

  

  下面是计算x的推导公式,s1、s2代表的是r值相同的两组(从上图三组中任取一组),这样的好处是,虽然不知到k的取值,但是两个方程两个未知数便可以约去一个k甚至能求出k,并且得到x的取值

   

  完整代码:

 1 # -*- coding=utf-8 -*-
 2 # py2
 3 import hashlib 
 4 p = 0x800000000000000089e1855218a0e7dac38136ffafa72eda7859f2171e25e65eac698c1702578b07dc2a1076da241c76c62d374d8389ea5aeffd3226a0530cc565f3bf6b50929139ebeac04f48c3c84afb796d61e5a4f9a8fda812ab59494232c7d2b4deb50aa18ee9e132bfa85ac4374d7f9091abc3d015efc871a584471bb1
 5 q = 0xf4f47f05794b256174bba6e9b396a7707e563c5b
 6 g = 0x5958c9d3898b224b12672c0b98e06c60df923cb8bc999d119458fef538b8fa4046c8db53039db620c094c9fa077ef389b5322a559946a71903f990f1f7e0e025e2d7f7cf494aff1a0470f5b64c36b625a097f1651fe775323556fe00b3608c887892878480e99041be601a62166ca6894bdd41a7054ec89f756ba9fc95302291
 7 y = 0x2d026f4bf30195ede3a088da85e398ef869611d0f68f0713d51c9c1a3a26c95105d915e2d8cdf26d056b86b8a7b85519b1c23cc3ecdc6062650462e3063bd179c2a6581519f674a61f1d89a1fff27171ebc1b93d4dc57bceb7ae2430f98a6a4d83d8279ee65d71c1203d2c96d65ebbf7cce9d32971c3de5084cce04a2e147821
 8 hash_x=0xca8f6f7c66fa362d40760d135b763eb8527d3d52
 9 r = 1105520928110492191417703162650245113664610474875
10 s1= 1267396447369736888040262262183731677867615804316
11 hash_m1 = 0xa4db3de27e2db3e5ef085ced2bced91b82e0df19
12 s2 = 1021643638653719618255840562522049391608552714967
13 hash_m2 = 0xd22804c4899b522b23eda34d2137cd8cc22b9ce8
14 
15 def gcd(a,b):
16     while a!=0:
17         a,b = b%a,a
18     return b
19 def findModReverse(a,m):
20     if gcd(a,m)!=1:
21         return None
22     u1,u2,u3 = 1,0,a
23     v1,v2,v3 = 0,1,m
24     while v3!=0:
25         q = u3//v3
26         v1,v2,v3,u1,u2,u3 = (u1-q*v1),(u2-q*v2),(u3-q*v3),v1,v2,v3
27     return u1%m
28 s1_rev = findModReverse(s1,q)
29 s2_rev = findModReverse(s2,q)
30 r_rev = findModReverse(r,q)
31 A=(hash_m1*s1_rev-hash_m2*s2_rev) %q
32 B=(s2_rev-s1_rev) %q
33 
34 B_rev=findModReverse(B,q)
35 x_tmp=(A*B_rev) %q
36 x=(x_tmp*r_rev) %q
37 # x=(A*r_rev*B_rev) %q
38 print "x=",x
39 hex_x=hex(x)[2:-1]
40 print "hex_x=",hex_x
41 Hash_x=hashlib.sha1(hex_x).hexdigest()
42 print "Sha1(x)=",Hash_x
43 if hash_x==int(Hash_x,16):
44     print "哈希匹配,求解私钥x正确!"

   运行结果:

posted @ 2019-01-21 23:05  爱吃砂糖橘的白龙  阅读(3142)  评论(4编辑  收藏  举报