技术改变命运,技术成就未来

(SGP 2006)Quadratic Bending Model

本文禁止转载
B站:Heskey0


A Quadratic Bending Model for Inextensible Surfaces(SGP 2006)

预备知识:

Laplace-Beltrami operator: 在微分几何中,拉普拉斯算子可以推广为定义在曲面,或更一般地黎曼流形与伪流形上,函数的算子。这个更一般的算子叫做Laplace-Beltrami operator

1. Introduction

​ Our contribution is to consider the class of isometric surface deformations, arriving at an expression for bending energy which is quadratic in positions.

  • 此方法适合于stretching stiffness远大于bending stiffness的情况,即:主要应用于布料

1.1 Continuous setting

Consider the bending energy of a deformable surface S:

Eb(S)=12SH2dA

where

  • H: the mean curvature
  • dA: the differential area

then rewrite it as:

Eb(S)=12SΔx,ΔxR3dA

where:

  • ,R3: the inner product of R3.
  • Δ: the Laplace-Beltrami
  • H=Δx.
  • x: the embedding of the surface

1.2 Central observation

  • For inextensible surfaces, Eb(S) is quadratic in positions.

  • Eb(S) together with the assumption of isometric deformation is called isometric bending model(IBM).

Our contribution is to present an analogous discrete IBM that is quadratic in positions. Its linear gradient and constant Hessian present an economic model for computing bending forces and their derivatives, enabling fast time-integration of cloth dynamics.

2. Discrete IBM

2.1 数学模型

Donoting the surface's vertex position vector by: x=(x0,x1,...,xn1)TR3n, then we write Eb(x) as:

Eb(x)=12xTQx=12i,jQijxi,xjR3

Eb(x) 需要满足的性质:

  1. quadratic in x under isometric deformations(已满足)
  2. invariant under rigid motions of the mesh
    • if and only if iQij=jQij=0
  3. invariant under uniform scaling
    • Q must scale with 1/s2 if the whole mesh is scaled by a global factor s.
    • since Eb is an energy, Q must be positive semi-define.
    • we can then write: Q=LTM1L,
      • L is invariant under scaling and jLij=0.
      • M is symmetric positive define and scales with s2.

A discrete IBM is then any energy of the form:

Eb(x)=12xT(LTM1L)x=12xTQx

One way to obtain a suitable M and L is to discretize the smooth Laplacian, ∆, using the finite element (FE) method:

Lij=SΦi,ΦjdAMij=SΦiΦjdA

where:

  • {Φi}: some Finite Element basis
  • L: the Finite Element stiffness matrix is discrete Laplacian
  • M1: the Finite Element mass matrix inverse simplifies to division by area in a lumped mass matrix approximation
  • Lx: the discrete analogue of the smooth mean curvatur vector, Δx.

2.2 Implementation

In a one-time precomputation step, the constant Hessian Q, is assembled by considering contributions from each local matrix, Q(ei), centered about interior edge ei with stencil consisting of:

  • the triangles, t0,t1,
  • their edges ei,
  • their vertices, x0,x1,x2,x3.

image

以上图为例:

Q(e0)=3(A0+A1)K0TK0

where:

  • Ai the area of triangles ti.

  • K0 is the row vector

  • K0=(c03+c04,c01+c02,c01c03,c02c04)

  • where cjk=cotej,ek=1/tanej,ek.

The local energy is obtained by:

Eb(ei)=12(x0,x1,x2,x4)Qei(x0,x1,x2,x4)T

The global (total) energy of the system is obtained by summing over all local contributions corresponding to interior edges.

posted @   Heskey0  阅读(149)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· PowerShell开发游戏 · 打蜜蜂
· 在鹅厂做java开发是什么体验
· 百万级群聊的设计实践
· WPF到Web的无缝过渡:英雄联盟客户端的OpenSilver迁移实战
· 永远不要相信用户的输入:从 SQL 注入攻防看输入验证的重要性

本站勉强运行 1184 天 10 小时 55 分 47 秒

喜欢请打赏

扫描二维码打赏

支付宝打赏

点击右上角即可分享
微信分享提示