【Computer Graphics】基础光线追踪中的采样

本文未经允许禁止转载
B站:https://space.bilibili.com/455965619
作者:Heskey0

因为Graphics领域书籍和资料以英文为主,故本文将以英文的方式呈现。


path tracer based on 《PBRT》

pbrt book

一.introduction to sampling theory

1. what is sampling?

impulse train:

冲激链

sampling process corresponds to multiplying the function by a “impulse train” function, an infinite sum of equally spaced delta functions.

采样

采样的图示

《PBRT》A digital image is represented as a set of pixel values, typically aligned on a rectangular grid. When a digital image is displayed on a physical device, these values are used to determine the spectral power emitted by pixels on the display.

《PBRT》the pixels that constitute an image are point samples of the image function at discrete points on the image plane.

there is no “area” associated with a pixel.

when sampling the film signal

pos = camera_pos
ray_dir = ti.Vector([
            (2 * fov * (u) / resolution[1] - fov * resolution[0] / resolution[1] - 1e-5),
            2 * fov * (v) / resolution[1] - fov - 1e-5, -1.0
        ]).normalized()

请添加图片描述

then we need anti-aliazing

pos = camera_pos
ray_dir = ti.Vector([
            (2 * fov * (u + ti.random()) / resolution[1] - fov * resolution[0] / resolution[1] - 1e-5),
            2 * fov * (v + ti.random()) / resolution[1] - fov - 1e-5, -1.0
        ]).normalized()

请添加图片描述

二.sampling

Preview (CDF sampling technique)

There are many techniques for generating random variates from a specified probability distribution such as the normal, exponential, or gamma distribution. However, one technique stands out because of its generality and simplicity: the inverse CDF sampling technique.

inverse CDF

1. Uniformly Sampling a Hemisphere (multidimensional sampling technique)

hemisphere sampling

a uniform distribution means that the density function is a constant, so we know that p(x) = c

半球均匀采样

so p(ω) = 1/2*pi

then p(θ, φ) = sinθ/2*pi

半球均匀采样-边缘密度

半球均匀采样-条件密度

Notice that the density function for φ itself is uniform

then use the 1D inversion technique to sample each of these PDFs in turn

半球均匀采样4

半球均匀采样5

半球均匀采样-Final

2. sample area light

sample light

def sample_area_light(hit_pos, pos_normal):
    # sampling inside the light area
    x = ti.random() * light_x_range + light_x_min_pos
    z = ti.random() * light_z_range + light_z_min_pos
    on_light_pos = ti.Vector([x, light_y_pos, z])
    return (on_light_pos - hit_pos).normalized()

请添加图片描述

3. introduction to importance sampling

why we need importance sampling?

the Monte Carlo estimator converges more quickly if the samples are taken from a distribution p(x) that is similar to the function f(x) in the integrand.

Monte Carlo estimator

《PBRT》:We will not provide a rigorous proof of this fact but will instead present an informal and intuitive argument.

then we try to analyze the importance sampling method

蒙特卡洛积分

we have three terms

  • BRDF
  • incident radiance ( infeasible )
  • cosine term

4. cosine-weighted sampling

1637050619568

1637050643929

1637050669913

Malley's method

So, We could compute the marginal and conditional densities as before, but instead we can use a technique known as Malley’s method to generate these cosine-weighted points.

Malleys Method

  1. cosine term

  2. 2D Sampling with Multidimensional Transformations

    • (1) sampling a unit disk (Concentric Mapping)

    • (2) project up to the unit hemisphere (cosine-weighted hemisphere sampling)

(1) sampling a unit disk

1637051228888

1637051236921

(2) projection

To complete the (r,φ)=(sinθ,φ)⇒(θ,φ) transformation, we need the determinant of the Jacobian

1637051213404

Why1637051266186

1637051283108

5. multiple importance sampling

BDPT only:

请添加图片描述

BDPT + MIS:

1637051397587

Why we need MIS?

请添加图片描述

请添加图片描述

1637051701718

1637051712205

1637051724783

  • balance heuristic

1637051757112

  • power heuristic (Veach determined empirically that β=2 is a good value.)

1637051764336

本文未经允许禁止转载
B站:https://space.bilibili.com/455965619
作者:Heskey0

posted @ 2021-12-12 01:24  Heskey0  阅读(468)  评论(0编辑  收藏  举报

载入天数...载入时分秒...