模型评价的ROC曲线
纵坐标:真正例率-----正样本被正确召回的比例
横坐标:假正例率(分子是预测为正实际为反,分母是负样本)-----负样本被错误找回的比例
因此在ROC曲线的面积AUC,可以理解为是固定FPR,正样本的正确召回率;或者固定TPR,负样本的正确召回率。(样本预测的排序质量)
因此AUC越大越好。
显然,我们关注的是模型预测为正的部分。
声明:
我们说正例或反例指的是样本真实标签
真和假指的是预测结果是否和标签一致。
TPR = 模型预测为正且实际为正 / 正样本数目
FPR = 模型预测为正且实际为反 / 负样本数目